
Factorial Analysis of Variance:
Between-Within

Ovande Furtado

2023-05-01

Table of contents

1 Decision 2

2 Sample data 3

3 Intro to Mixed 𝑓ANOVA 4

4 Assumptions 5

5 Equations 6

6 F Distribution 8

7 Measure of effect size 10

8 Post-Hoc analysis 11

9 Result interpretation 12
9.1 Interpreting Main Effects When Interaction is

Significant . . . . . . . . . . . . . . . . . . . . . . 13

10 Example 14
10.1 Research question . . . . . . . . . . . . . . . . . . 15
10.2 Data set up . . . . . . . . . . . . . . . . . . . . . 16
10.3 Variables . . . . . . . . . . . . . . . . . . . . . . 16
10.4 Hypothesis Statements . . . . . . . . . . . . . . . 16
10.5 Analyzing with jamovi . . . . . . . . . . . . . . . 18

1



10.6 Analyzing with SPSS . . . . . . . . . . . . . . . . 18
10.7 Interpreting the results . . . . . . . . . . . . . . . 20
10.8 APA Style . . . . . . . . . . . . . . . . . . . . . . 21

11 Nonparametric 22
11.1 jamovi: . . . . . . . . . . . . . . . . . . . . . . . . 22
11.2 SPSS: . . . . . . . . . . . . . . . . . . . . . . . . 22

Learning Objectives

1. Understand the basic principles and assumptions of
within-within factorial ANOVA.

2. Understand how to design and conduct a within-within
factorial ANOVA study.

3. Understand how to interpret the results of a within-within
factorial ANOVA, including main effects and interactions.

4. Understand how to conduct post-hoc tests to compare
levels of the within-subjects factor.

5. Understand how to address violations of the assumptions
of within-within factorial ANOVA, such as non-normality
of the data.

6. Understand the non-parametric alternatives to within-
within factorial ANOVA, such as the Friedman test.

7. Understand how to run a within-within factorial ANOVA
and LMM in popular statistical software such as SPSS
and Jamovi.

8. Understand how to select appropriate models and meth-
ods based on the specific research question and data.

1 Decision

Here’s a list of questions that a researcher may need to consider
when deciding to use a Mixed Factorial ANOVA:

1. Is there at least one between-subjects factor and one
within-subjects factor? If not, then a mixed factorial
ANOVA is not appropriate.

2. Is the dependent variable continuous? If not, then a
mixed factorial ANOVA is not appropriate.
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3. Are the independent variables dependent or related to
each other? If yes, then a mixed factorial ANOVA may
be appropriate.

4. Are the data normally distributed? If the data are not
normally distributed, then the researcher may consider us-
ing a nonparametric alternative or transforming the data
to meet the normality assumption.

5. Are the variances equal across groups? If not, then the re-
searcher may consider using Welch’s ANOVA or a mixed
design Welch’s ANOVA.

6. Are there any significant interactions between the
between-subjects and within-subjects factors? If yes,
then the researcher should interpret and report these
interactions.

7. Are there any significant main effects of the between-
subjects or within-subjects factors? If yes, then the re-
searcher should interpret and report these main effects.

8. Are there any significant simple effects or post-hoc com-
parisons? If yes, then the researcher should conduct and
interpret these tests to further explore the effects of the
independent variables on the dependent variable.

Note

The website StatKat has several tools to help with this
decision.

2 Sample data

Download1 the dataset:This dataset consists of 30 participants who have undergone
balance and strength training interventions. The dataset con-
tains the following variables:

1. ID: A unique identifier for each participant.
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2. Pretest_Balance: The Functional Reach Test (FRT)
score for balance at the beginning of the intervention
(pretest).

3. Midtest_Balance: The FRT score for balance at the
midpoint of the intervention (midtest).

4. Posttest_Balance: The FRT score for balance at the
end of the intervention (posttest).

5. Pretest_Strength: The strength score at the beginning
of the intervention (pretest).

6. Midtest_Strength: The strength score at the midpoint
of the intervention (midtest).

7. Posttest_Strength: The strength score at the end of
the intervention (posttest).

8. Gender: The gender of each participant (Male or Fe-
male).

The dataset includes information on participants’ motor perfor-
mance in terms of balance (FRT scores) and strength over three
time points (pretest, midtest, and posttest) and their gender.
This dataset can be used to investigate the effectiveness of bal-
ance and strength training interventions on motor performance
over time and any potential differences in outcomes based on
gender.

A lower FRT score suggests poorer balance and stabil-
ity, which may be associated with a higher risk of falling.
In contrast, a higher FRT score indicates better balance
and stability, suggesting a lower risk of falling. By ex-
amining the effects of time and training type on FRT
scores, this study aims to determine whether balance and
strength training interventions can improve motor perfor-
mance and, by extension, reduce the risk of falling among
the participants.

3 Intro to Mixed 𝑓ANOVA

Kinesiology research often involves studying the effects of mul-
tiple independent variables on a continuous dependent variable.
To analyze these complex relationships, researchers commonly
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use statistical methods such as ANOVA. Within-subjects and
between-subjects ANOVA are two common approaches for ana-
lyzing the effects of independent variables on a dependent vari-
able. However, there are situations where a combination of
both approaches, called mixed factorial ANOVA, may be appro-
priate. Mixed factorial ANOVA allows researchers to examine
the effects of both within-subjects and between-subjects factors
on a continuous dependent variable, as well as any potential in-
teractions between these factors.

In this blog post, we will explore the basics of mixed facto-
rial ANOVA, including when it is appropriate to use, how to
conduct the analysis, and how to interpret the results. We
will also provide real-world examples from the field of kinesiol-
ogy to demonstrate how mixed factorial ANOVA can be used
to answer research questions and improve our understanding
of complex relationships between independent and dependent
variables.

4 Assumptions

1. Normality: The dependent variable should be normally
distributed within each group defined by the combination
of the independent variables. This assumption can be
checked using normal probability plots or statistical tests
such as the Shapiro-Wilk test.

2. Homogeneity of variance: The variances of the dependent
variable should be equal across groups defined by the com-
bination of the independent variables. This assumption
can be checked using statistical tests such as Levene’s or
Brown-Forsythe’s.

3. Sphericity: The variances of the differences between all
pairs of levels of the within-subjects factor should be
equal. This assumption is referred to as sphericity and is
important because violations of sphericity can lead to in-
flated Type I error rates. This assumption can be checked
using statistical tests such as Mauchly’s or Greenhouse-
Geisser’s correction.
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4. Independence: Observations within each group defined
by the combination of the independent variables should
be independent.

It is important to note that violation of these assumptions
can affect the validity of the mixed factorial ANOVA analy-
sis results. If these assumptions are not met, the researcher
may consider using alternative statistical methods, such as non-
parametric tests or data transformations, or correcting for vio-
lations through various means, such as using the Greenhouse-
Geisser correction for violations of sphericity. Checking these
assumptions should be a standard part of any mixed factorial
ANOVA analysis, as it helps to ensure that the results are valid
and reliable.

5 Equations

Here are the equations needed for hand calculation of mixed
factorial ANOVA:

Grand mean

̄𝑌.. =
∑𝑎

𝑖=1 ∑𝑏
𝑗=1 ∑𝑛

𝑘=1 𝑌𝑖𝑗𝑘
𝑎𝑏𝑛

Factor A sum of squares

(𝑆𝑆𝐴) = 𝑏𝑛
𝑎

∑
𝑖=1

( ̄𝑌𝑖.. − ̄𝑌..)2

Factor B sum of squares

(𝑆𝑆𝐵) = 𝑎𝑛
𝑏

∑
𝑗=1

( ̄𝑌.𝑗. − ̄𝑌..)2

Interaction sum of squares
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(𝑆𝑆𝐴𝐵) = 𝑛
𝑎

∑
𝑖=1

𝑏
∑
𝑗=1

( ̄𝑌𝑖𝑗. − ̄𝑌𝑖.. − ̄𝑌.𝑗. + ̄𝑌..)2

Within-subjects sum of squares

(𝑆𝑆𝑤) =
𝑎

∑
𝑖=1

𝑏
∑
𝑗=1

𝑛
∑
𝑘=1

(𝑌𝑖𝑗𝑘 − ̄𝑌𝑖𝑗.)2

Between-subjects sum of squares

(𝑆𝑆𝑏) =
𝑎

∑
𝑖=1

𝑏
∑
𝑗=1

𝑛( ̄𝑌𝑖𝑗. − ̄𝑌..)2

Total sum of squares

(𝑆𝑆𝑇 ) =
𝑎

∑
𝑖=1

𝑏
∑
𝑗=1

𝑛
∑
𝑘=1

(𝑌𝑖𝑗𝑘 − ̄𝑌..)2

Degrees of freedom

(𝑑𝑓𝐴) = 𝑎 − 1, (𝑑𝑓𝐵) = 𝑏 − 1, (𝑑𝑓𝐴𝐵) = (𝑎 − 1)(𝑏 − 1),

(𝑑𝑓𝑤) = 𝑎𝑏(𝑛 − 1), (𝑑𝑓𝑏) = 𝑎𝑏 − 1, (𝑑𝑓𝑇 ) = 𝑎𝑏𝑛 − 1

Mean squares

(𝑀𝑆𝐴) = 𝑆𝑆𝐴
𝑑𝑓𝐴

, (𝑀𝑆𝐵) = 𝑆𝑆𝐵
𝑑𝑓𝐵

, (𝑀𝑆𝐴𝐵) = 𝑆𝑆𝐴𝐵
𝑑𝑓𝐴𝐵

,

(𝑀𝑆𝑤) = 𝑆𝑆𝑤
𝑑𝑓𝑤

, (𝑀𝑆𝑏) = 𝑆𝑆𝑏
𝑑𝑓𝑏

, (𝑀𝑆𝑇 ) = 𝑆𝑆𝑇
𝑑𝑓𝑇

F-ratio
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𝐹 = 𝑀𝑆𝑒𝑓𝑓𝑒𝑐𝑡
𝑀𝑆𝑒𝑟𝑟𝑜𝑟

where 𝑎 is the number of levels for the between-subjects factor,
𝑏 is the number of levels for the within-subjects factor, and 𝑛
is the number of observations per cell.

6 F Distribution

The F distribution[1], also known as the Fisher-Snedecor distri-
bution, is a continuous probability distribution that is widely
used in statistical hypothesis testing, particularly in the anal-
ysis of variance (ANOVA). It is named after Ronald A. Fisher
and George W. Snedecor, two prominent statisticians who con-
tributed significantly to its development.

The F-distribution used in the Between-Between Factorial
ANOVA is the same as that used in One-Way ANOVA. The
F-distribution is a continuous probability distribution that
arises frequently as the null distribution of the test statistic in
ANOVA, regardless of whether it is a One-Way or Factorial
ANOVA.

However, the degrees of freedom for the F-distribution will dif-
fer between One-Way ANOVA and Factorial ANOVA. In One-
Way ANOVA, the degrees of freedom are associated with the
number of levels of a single independent variable.

In Factorial ANOVA, the degrees of freedom are associated
with the number of levels of multiple independent variables
and their interactions. When comparing F-ratios to critical F-
values, you need to consider the appropriate degrees of freedom
for your specific test. In both One-Way and Factorial ANOVA,
you look up the critical F-value in an F-distribution table based
on the numerator and denominator degrees of freedom and the
chosen significance level (usually � = 0.05). If the calculated
F-ratio is greater than the critical F-value, you can reject the
null hypothesis and conclude that there is a significant effect.

Some key characteristics of the F distribution are:
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1. It is always non-negative, as it represents the ratio of two
chi-square distributions.

2. It is asymmetric and positively skewed, with a longer tail
on the right side.

3. The peak of the distribution shifts to the right as the
degrees of freedom increase.

4. As both degrees of freedom approach infinity, the F dis-
tribution converges to a normal distribution.

# Load required packages quietly
if (!require("pacman")) install.packages("pacman", quiet = TRUE)

Loading required package: pacman

suppressMessages(pacman::p_load("ggplot2", "ggthemes"))

# Set the parameters for the F distribution
df1 <- 10 # degrees of freedom for the numerator
df2 <- 20 # degrees of freedom for the denominator

# Create a function to calculate the probability density function (pdf) of the F distribution
f_pdf <- function(x) {

df(x, df1, df2)
}

# Define the range of x values to plot
x_range <- seq(0, 5, length.out = 1000)

# Plot the F distribution using ggplot2
suppressWarnings(

ggplot(data.frame(x = x_range, y = f_pdf(x_range)), aes(x = x, y = y)) +
geom_line(color = "blue", size = 1) +
ggtitle(paste("F Distribution with df1 =", df1, "and df2 =", df2)) +
xlab("F value") +
ylab("Probability Density") +
theme_minimal()

)
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7 Measure of effect size

Measures of effect size for mixed factorial ANOVA can help
researchers interpret the magnitude of the effects found in their
analysis. Here are two commonly used measures of effect size
for mixed factorial ANOVA:

1. Partial eta-squared (𝜂2
𝑝): This measure of effect size repre-

sents the proportion of variance in the dependent variable
accounted for by a specific independent variable or inter-
action while controlling for other independent variables.
It is calculated by dividing the sum of squares for an ef-
fect by the sum of squares total. For example, the partial
eta-squared for the between-subjects factor A would be
calculated by dividing the sum of squares for factor A
by the sum of squares total. A commonly used rule of
thumb is that a partial eta-squared value of 0.01 repre-
sents a small effect, 0.06 represents a medium effect, and
0.14 represents a large effect.

2. Cohen’s d: This measure of effect size represents the stan-
dardized mean difference between two groups. In the con-
text of mixed factorial ANOVA, Cohen’s d can be used
to calculate the effect size for a specific contrast between
levels of the independent variables. It is calculated by
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dividing the difference in means between two groups by
the pooled standard deviation. A commonly used rule of
thumb is that a Cohen’s d value of 0.2 represents a small
effect, 0.5 represents a medium effect, and 0.8 represents
a large effect.

By reporting measures of effect size, researchers can provide ad-
ditional information about the magnitude of the effects found
in their analysis, which can help interpret the practical signifi-
cance of the results.

8 Post-Hoc analysis

Post hoc analysis is a statistical procedure conducted after
an ANOVA to compare individual group means to determine
which groups are significantly different from each other. The
term “post hoc” is Latin for “after this, therefore because of
this,” meaning that it is conducted after the ANOVA to avoid
making assumptions about which groups will differ before ana-
lyzing the data.

Post hoc tests are necessary when a significant effect is found in
the ANOVA, indicating that at least one of the groups differs
significantly from the others. The most common post hoc tests
used in mixed factorial ANOVA are:

1. Tukey’s Honestly Significant Difference (HSD) test: This
test compares all possible pairs of means to determine
which pairs are significantly different from each other. It
controls for Type I error rates but is inappropriate if the
sample sizes are unequal.

2. Bonferroni correction: This test is a more conservative
approach that controls the overall Type I error rate by
adjusting the significance level for each comparison. It is
appropriate for unequal sample sizes and is more stringent
than Tukey’s HSD test.

3. Scheffé’s test: This is also conservative and controls
for the family-wise error rate but is less powerful than
Tukey’s HSD test and Bonferroni correction.
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4. Sidak’s test: This test is similar to Bonferroni correction
but is less conservative and more powerful. It is appro-
priate for unequal sample sizes.

5. Fisher’s Least Significant Difference (LSD) test compares
the means of two groups at a time and is inappropriate
for multiple comparisons.

The choice of post hoc test depends on the specific research
question and the data characteristics, such as sample size and
variability. By conducting post hoc tests, researchers can de-
termine which specific group means are significantly different
from each other, providing a more detailed understanding of
the patterns of results in their data.

9 Result interpretation

Here are the steps researchers would typically take to interpret
the results of a mixed factorial ANOVA:

1. Check for violations of assumptions: Before interpret-
ing the results of a mixed factorial ANOVA, researchers
should check whether the assumptions of normality, ho-
mogeneity of variance, sphericity, and independence are
met. If the assumptions are not met, the validity of the
results may be compromised, and alternative statistical
methods may need to be used.

2. Examine the main effects: Researchers should examine
the main effects of the between-subjects factor(s) and
within-subjects factor(s) to determine whether they are
significant. A significant main effect indicates a signifi-
cant difference between the means of the groups defined
by that factor.

3. Examine the interaction effect: Researchers should ex-
amine the interaction effect to determine whether it is
significant. A significant interaction effect indicates that
the effect of one independent variable on the dependent
variable differs depending on the level of the other inde-
pendent variable.
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4. Conduct post hoc tests: If there is a significant main
effect or interaction effect, researchers may conduct post
hoc tests to determine which specific group means are
significantly different from each other.

5. Interpret effect sizes: Researchers should interpret effect
sizes, such as partial eta-squared and Cohen’s d, to deter-
mine the practical significance of the results.

6. Consider the research question: Finally, researchers
should consider the research question and the implica-
tions of the results. They should interpret the results
in the context of the specific research question and the
hypotheses being tested.

By following these steps, researchers can systematically and
rigorously interpret the results of a mixed factorial ANOVA,
providing a detailed understanding of the relationships between
the independent and dependent variables in their study.

9.1 Interpreting Main Effects When Interaction is
Significant

Interpreting the main effects becomes more complex when a
significant interaction is present in a factorial ANOVA. A signif-
icant interaction suggests that the effect of one factor depends
on the level of the other factor(s). In such cases, focusing on
interpreting the interaction rather than the main effects alone
is essential. Here is how to go about it:

1. Simple Effects Analysis: Conduct a simple effects
analysis to disentangle the interaction. Simple effects
analysis involves examining the effect of one factor at
each level of the other factor(s). This helps identify
specific combinations of factor levels contributing to the
significant interaction.

2. Post Hoc Tests for Simple Effects: If a simple effect
is significant, perform post hoc tests to identify which
pairwise comparisons are significantly different. Use ap-
propriate post hoc tests like Bonferroni, Tukey’s HSD,
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or Hochberg’s GT2, depending on your study design and
sample sizes.

3. Graphical Representation: Plot the means of the de-
pendent variable across the levels of one factor, with sep-
arate lines for each level of the other factor. This interac-
tion plot will help visualize the nature of the interaction,
making it easier to interpret the relationship between fac-
tors.

4. Interpretation: Describe the pattern observed in the
interaction plot, paying attention to the differences in the
slopes of the lines. Explain how the effect of one factor
changes depending on the level of the other factor(s). It
is crucial to interpret the main effects in the context of
the interaction, as the main effects alone may not provide
a complete picture of the relationships between variables.

5. Report the Results: Report the results of the interac-
tion and the simple effects analysis, including any post
hoc tests. Discuss the practical implications of these find-
ings in relation to your research question.

Remember that the main effects should be interpreted with
caution in the presence of a significant interaction. The inter-
action and the simple effects provide more meaningful insights
into the relationships between the factors and the dependent
variable.

10 Example

Sure, here is an updated example:

A researcher wanted to investigate the effects of gender on mo-
tor performance during balance training. Specifically, the study
aimed to determine whether there were differences in motor per-
formance between males and females during three-time points:
pretest (T1), midtest (T2), and posttest (T3) of a balance train-
ing intervention. To conduct the study, 30 participants were
recruited, 15 males and 15 females. All participants completed
motor performance tests at three-time points during the bal-
ance training intervention. In addition, motor performance
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was assessed using the Functional Reach Test (FRT), which
measures a participant’s ability to reach forward while main-
taining balance.

The study design is a mixed factorial ANOVA, with the within-
subjects factor of time (pretest, midtest, posttest) and the
between-subjects factor of gender (male vs. female). The de-
pendent variable is motor performance, measured by the FRT
score during balance training.

The first step in interpreting the results would be to check for
violations of assumptions, such as normality, homogeneity of
variance, sphericity, and independence. If the assumptions are
not met, appropriate transformations or nonparametric meth-
ods may need to be used.

The next step would be to examine the interaction effect of
gender and time. This would determine whether the effect of
gender on motor performance is dependent on the time points
during balance training. If the interaction effect is significant,
post hoc tests would be conducted to determine which specific
group means are significantly different from each other.

The main effect of gender would also be examined to determine
whether there are significant differences between the male and
female groups during balance training. If the interaction effect
is not significant, post hoc tests would be conducted to deter-
mine which specific group means are significantly different from
each other.

Finally, the practical significance of the results would be inter-
preted by considering effect sizes, such as partial eta-squared
and Cohen’s d, and the implications of the results for the re-
search question would be discussed.

Using the provided dataset, a within-between factorial ANOVA
could be conducted using statistical software to analyze the
data.

10.1 Research question

The research question for this study is: “What are the effects of
gender on motor performance during a balance training inter-
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vention, measured by the Functional Reach Test (FRT) score
at three time points: pretest (T1), midtest (T2), and posttest
(T3)?

10.2 Data set up

Table 1: Within-subjects ANOVA data setup

ID Balance_T1 Balance_T2 Balance_T3 Gender
1 20 23 26 Male
2 25 28 31 Male
3 28 31 34 Male
4 22 24 27 Male
5 27 30 33 Male

10.3 Variables

• The dependent variable is motor performance, measured
by the Functional Reach Test (FRT) score.

• The independent variables are gender (male vs. female)
and time (pretest (T1), midtest (T2), and posttest (T3)).

• Gender is a categorical variable, with two levels: male
and female.

• Time is a categorical variable, with three levels: pretest
(T1), midtest (T2), and posttest (T3).

• Motor performance is a continuous variable, measured by
the FRT score.

10.4 Hypothesis Statements

Null Hypothesis (H0𝑇 ): 𝜇𝑇 1 = 𝜇𝑇 2 = 𝜇𝑇 3

This null hypothesis states that there is no significant differ-
ence in the means of motor performance across the three time
points (pretest, midtest, and posttest) for both males and fe-
males combined (i.e., the means are equal).
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Null Hypothesis (H0𝐺): 𝜇𝑚𝑎𝑙𝑒 = 𝜇𝑓𝑒𝑚𝑎𝑙𝑒

This null hypothesis states that there is no significant difference
in the means of motor performance between males and females
combined across all time points (i.e., the means are equal).

Null Hypothesis (H0𝑇 𝐺): Absence of interaction

This null hypothesis states that there is no significant interac-
tion effect between time and gender on motor performance.

Alternative Hypothesis (H1𝑇 ): 𝜇𝑇 1 ≠ 𝜇𝑇 2 ≠ 𝜇𝑇 3

This alternative hypothesis states that there is a significant
difference in the means of motor performance across the three
time points (pretest, midtest, and posttest) for both males and
females combined (i.e., the means are not equal).

Alternative Hypothesis (H1𝐺): 𝜇𝑚𝑎𝑙𝑒 ≠ 𝜇𝑓𝑒𝑚𝑎𝑙𝑒

This alternative hypothesis states that there is a significant
difference in the means of motor performance between males
and females combined across all time points (i.e., the means
are not equal).

Alternative Hypothesis (H1𝑇 𝐺): Presence of interaction

This alternative hypothesis states that there is a significant
interaction effect between time and gender on motor perfor-
mance.
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10.5 Analyzing with jamovi

Jamovi is an open-source statistical software package that al-
lows users to run various statistical analyses, including ANOVA
(Analysis of Variance).

Download jamovi file
(data+analysis+output)
Download jamovi output

Video tutorial[alexanderswan2020?]

To perform a mixed factorial ANOVA in jamovi, you need
one continuous variable for each within-subject measurement
(e.g. pre/post), at least one grouping variable with at least two
levels (e.g. treatment/control) and one variable to function as
a between subject factor (e.g. gender). Here are the steps to
follow:

1. Select Analyses → ANOVA → Repeated Measures
ANOVA.

2. In the box Repeated Measures Factors, write the name
of your outcome variable (e.g. Time) and name the lev-
els for each measurement occasion (e.g. Time 1, Time 2,
Time 3).

3. Drag and drop your outcome variables to their respective
cells in Repeated Measures Cells.

4. Move your grouping variable(s) to Between Subject
Factors.

The result will be shown in the right panel.

Remember that the specific steps and options may change in
newer versions of Jamovi, so be sure to consult the latest doc-
umentation and tutorials if you encounter any difficulties. The
steps above refer to Version 2.3.21.0.

10.6 Analyzing with SPSS

To perform a mixed ANOVA in SPSS Statistics, you need
to have groups that have been split on two “factors” (also
known as independent variables), where one factor is a “within-
subjects” factor and the other factor is a “between-subjects”
factor. Here are the steps to follow:

Mixed Factorial ANOVA in
SPSS[how2stats2011?]1. Select Analyze from the list of menu options at the top

of the screen.
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2. Scroll down to General Linear Model and select
Univariate.

3. In the Univariate window, select your dependent vari-
able and your within-subjects and between-subjects fac-
tors.

The primary purpose of a mixed ANOVA is to understand if
there is an interaction between these two factors on the depen-
dent variable.

Note

The specific steps and options may vary depending on
the version of SPSS you are using, as well as the specific
details of your data and analysis. The steps above are for
version 28.

SPSS Syntax

Here is the SPSS syntax for the 3x2 Between-Between Factorial
ANOVA using your dataset:

GLM dependent_variable
BY within_subject_factor1 within_subject_factor2
WITH between_subject_factor
/WSFACTOR=within_subject_factor1 2 within_subject_factor2 2
/METHOD=SSTYPE(3)
/PRINT=DESCRIPTIVE ETASQ HOMOGENEITY
/CRITERIA=ALPHA(.05)
/DESIGN=between_subject_factor
/EMMEANS=TABLES(within_subject_factor1*within_subject_factor2) COMPARE ADJ(SIDAK)
/WSDESIGN=within_subject_factor1*within_subject_factor2.

Replace dependent_variable with the name of your depen-
dent variable, within_subject_factor1 and within_subject_factor2
with the names of your within-subjects factors, and
between_subject_factor with the name of your between-
subjects factor.

The WSFACTOR command specifies the levels of each within-
subjects factor. In this example, the first factor has 2 levels
and the second factor has 2 levels.
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The METHOD command specifies the type of sum of squares to
be used. Type III is the default for SPSS, which is equivalent
to the partial sum of squares used in SAS.

The PRINT command specifies the output to be displayed, in-
cluding descriptive statistics, effect sizes, and tests of homo-
geneity of variance.

The CRITERIA command specifies the alpha level for signifi-
cance testing.

The DESIGN command specifies the between-subjects factor.

The EMMEANS command specifies the pairwise comparisons be-
tween the levels of the within-subjects factors, using the Sidak
adjustment for multiple comparisons.

The WSDESIGN command specifies the within-subjects factors
and their levels.

Note that this syntax assumes a balanced design with equal
numbers of observations in each cell. If your design is unbal-
anced, you may need to use a different command to adjust for
missing data, such as the MIXED command with the REPEATED
option. Additionally, some options may need to be adjusted de-
pending on the specific research question and data structure.

10.7 Interpreting the results

Based on the results from the Factorial ANOVA and Post-hoc
test tables, we can interpret the findings as follows:

Based on the results provided:

Within Subjects Effects:

• The main effect of Time is significant, F(2, 56) = 2408.33,
p < .001, �²p = .989. This indicates that there is a signifi-
cant difference in the dependent variable across the three
levels of the within-subjects factor Time.

• The Time x Gender interaction is not significant, F(2, 56)
= 0.01, p = .990, �²p = .000.

Between Subjects Effects:
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• The main effect of Gender is not significant, F(1, 28) =
0.185, p = .671, �²p = .007.

Post Hoc Comparisons:

• The mean difference between Time 1 and Time 2 is sig-
nificant, t(28) = -25.9, p < .001 (Bonferroni-corrected).

• The mean difference between Time 1 and Time 3 is sig-
nificant, t(28) = -56.6, p < .001 (Bonferroni-corrected).

• The mean difference between Time 2 and Time 3 is sig-
nificant, t(28) = -Inf, p < .001 (Bonferroni-corrected).

10.8 APA Style

The results for this analysis can be written following the APA
Style as shown below.

Sure! Here’s an example write-up of the within-
within factorial ANOVA results in APA style:

A within-within factorial ANOVA was conducted to
examine the effect of Time (with three levels) and
Gender (with two levels) on the dependent variable
in a sample of 30 participants. There was a signif-
icant main effect of Time, F(2, 56) = 2408.33, p
< .001, �²p = .989, indicating that there was a sig-
nificant difference in the dependent variable across
the three levels of Time. The main effect of Gender
was not significant, F(1, 28) = 0.185, p = .671, �²p
= .007. The Time x Gender interaction was not
significant, F(2, 56) = 0.01, p = .990, �²p = .000.

Post-hoc tests revealed that there were significant
mean differences between Time 1 and Time 2 (mean
difference = -2.54, SE = 0.0978, t(28) = -25.9, p
< .001, Bonferroni-corrected), between Time 1 and
Time 3 (mean difference = -5.54, SE = 0.0978, t(28)
= -56.6, p < .001, Bonferroni-corrected), and be-
tween Time 2 and Time 3 (mean difference = -3.00,
SE = 0.0000, t(28) = -Inf, p < .001, Bonferroni-
corrected).
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Overall, these results suggest that there is a signifi-
cant effect of Time on the dependent variable, with
significant differences between all pairs of Time lev-
els. However, there is no evidence of a significant
interaction between Time and Gender, and no sig-
nificant main effect of Gender.

11 Nonparametric

11.1 jamovi:

To run a linear mixed effects model (LMM) in Jamovi, you can
use the GAMLj module which offers tools to estimate, visualize,
and interpret General Linear Models, Mixed Linear Models and
Generalized Linear Models with categorical and/or continuous
variables. Here are the steps to follow:

1. Install GAMLj from the Jamovi library. This is available
to the top right of the ‘Analyses‘ tab.

2. Once installed, a new ‘Linear Models‘ entry appears
alongside the other analyses.

3. From this, you can select ‘Linear Mixed Models‘.

11.2 SPSS:

To run a linear mixed effects model (LMM) in SPSS, you can
follow these steps:

1. Open SPSS and load your dataset.
2. Click on “Analyze” in the top menu.
3. Select “Mixed Models” from the list of options.
4. In the “Mixed Models” dialog box, select your dependent

variable and specify the fixed and random effects in the
“Fixed” and “Random” tabs.

5. In the “Random” tab, select the grouping variable for
your random effects.

6. Specify the covariance structure and estimation method
in the “Method” tab.
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7. In the “Options” tab, select the type of output you want
to see, such as model coefficients or ANOVA tables.

8. Click “Run” to generate the results.

Image credit
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