
Factorial Analysis of Variance: Within-Within
Ovande Furtado

2023-03-31

Table of contents

1 Decision 2

2 Sample data 3

3 Intro to 𝑓ANOVA 4

4 Assumptions 4

5 Equations 5

6 F Distribution 7

7 Measure of effect size 9

8 Post-Hoc analysis 10

9 Result interpretation 11
9.1 Interpreting Main Effects When Interaction is Significant . . . . . . . . . . . . 12

10 Example 12
10.1 Research question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
10.2 Data set up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
10.3 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
10.4 Hypothesis Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
10.5 Analyzing with jamovi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
10.6 Analyzing with SPSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
10.7 Interpreting the results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
10.8 APA Style . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1



11 Nonparametric 18
11.1 jamovi: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
11.2 SPSS: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
11.3 R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

12 Other resources 19

Learning Objectives

1. Define within-within factorial ANOVA and describe its potential applications in kinesi-
ology research.

2. Understand the assumptions underlying within-within factorial ANOVA and how to
check them.

3. Know how to calculate the various sums of squares, degrees of freedom, and mean squares
for within-within factorial ANOVA by hand.

4. Interpret the results of within-within factorial ANOVA, including F-ratios and p-values,
and understand how to make inferences about the effects of factors and their interactions.

5. Understand how to conduct post-hoc tests to investigate significant main effects or in-
teractions.

6. Describe the advantages and limitations of within-within factorial ANOVA compared to
other statistical methods.

7. Understand how to use statistical software to conduct within-within factorial ANOVA
and interpret the output.

8. Identify real-world examples of within-within factorial ANOVA in kinesiology research
and understand how it can be used to answer research questions.

9. Be able to critically evaluate within-within factorial ANOVA studies in the kinesiology
literature and identify potential limitations or confounding factors.

10. Understand the importance of careful study design and data collection for within-within
factorial ANOVA and how to avoid common pitfalls.

1 Decision

Here’s a list of questions that a researcher may need to consider when deciding to use a
within-subjects factorial ANOVA:

1. Are both independent variables dependent or related to each other? If yes, then a within-
subjects factorial ANOVA may be appropriate.

2. Is the dependent variable continuous? If not, then a within-subjects factorial ANOVA is
not appropriate.

3. Are there two or more independent variables? If not, then a within-subjects factorial
ANOVA is not appropriate. In this case, use the One-way ANOVA.
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4. Are the data normally distributed? If the data are not normally distributed, then the
researcher may consider using a nonparametric alternative such as the Friedman test or
a mixed design Friedman test.

5. Are the variances equal across groups? If not, then the researcher may consider using
Welch’s ANOVA or a mixed design Welch’s ANOVA.

In summary, a within-subjects factorial ANOVA is appropriate when the dependent variable
is continuous and there are two or more independent variables that are dependent or related
to each other, and the data meet the assumptions of normality and equal variances.

Note

The website StatKat has several tools to help with this decision.

2 Sample data

Download1 the dataset: motor_performance.csv

This dataset consists of 30 participants who have undergone balance and strength training
interventions. The dataset contains the following variables:

1. ID: A unique identifier for each participant.
2. Pretest_Balance: The Functional Reach Test (FRT) score for balance at the beginning

of the intervention (pretest).
3. Midtest_Balance: The FRT score for balance at the midpoint of the intervention

(midtest).
4. Posttest_Balance: The FRT score for balance at the end of the intervention (posttest).
5. Pretest_Strength: The strength score at the beginning of the intervention (pretest).
6. Midtest_Strength: The strength score at the midpoint of the intervention (midtest).
7. Posttest_Strength: The strength score at the end of the intervention (posttest).
8. Gender: The gender of each participant (Male or Female).

The dataset includes information on participants’ motor performance in terms of balance (FRT
scores) and strength over three time points (pretest, midtest, and posttest) and their gender.
This dataset can be used to investigate the effectiveness of balance and strength training
interventions on motor performance over time and any potential differences in outcomes based
on gender.

A lower FRT score suggests poorer balance and stability, which may be associated with
a higher risk of falling. In contrast, a higher FRT score indicates better balance and

1Right-click on the link and save as…
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stability, suggesting a lower risk of falling. By examining the effects of time and training
type on FRT scores, this study aims to determine whether balance and strength training
interventions can improve motor performance and, by extension, reduce the risk of falling
among the participants.

3 Intro to 𝑓ANOVA

In kinesiology, we often investigate the effects of multiple factors on various dependent vari-
ables. Take, for example, the study of strength training interventions. We might be interested
in examining the impact of different exercise regimens and intensities on muscle strength, en-
durance, and flexibility. We need a statistical approach that accounts for multiple independent
variables and their possible interactions to explore these relationships.

Enter the within-within factorial ANOVA! This advanced statistical method allows us to ex-
amine the effects of two or more within-subject factors on a continuous dependent variable
while accounting for the interactions between these factors. Using a within-within design, we
can minimize the influence of extraneous variables and increase the statistical power of our
analysis, making it an ideal choice for kinesiology research.

This blog post will cover the basics of within-within factorial ANOVA, including its assump-
tions, interpretation, and application. We will then delve into real-world examples from kine-
siology research, demonstrating how this versatile tool can untangle the web of relationships
between various factors in our studies. By the end of this post, you will have a deeper under-
standing of the within-within factorial ANOVA and be better equipped to incorporate it into
your research projects.

4 Assumptions

Certain assumptions must be met for the within-within factorial ANOVA to produce valid
results. These assumptions are important when designing your study and analyzing your data.
Here are the main assumptions for this analysis:

1. Normality: The dependent variable should be approximately normally distributed within
each combination of the levels of the within-subject factors. While the within-within
factorial ANOVA is fairly robust to moderate violations of normality, severe deviations
from normality can compromise the validity of the results. It is essential to assess the
normality of the data using visual methods like histograms, Q-Q plots, or statistical tests
like the Shapiro-Wilk test.
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2. Sphericity: Sphericity is an assumption specific to within-subjects designs and refers to
the equality of variances of the differences between levels of a within-subject factor. Vio-
lations of sphericity can lead to an increased likelihood of Type I errors (false positives).
To assess sphericity, you can use Mauchly’s test. If sphericity is violated, you can apply
corrections to the degrees of freedom, such as the Greenhouse-Geisser or Huynh-Feldt
corrections, to adjust the F-test and maintain the validity of the results.

3. Independence of observations: This assumption states that the observations within each
combination of the levels of the within-subject factors should be independent of one
another. Although within-subject designs inherently involve repeated measures on the
same participants, the independence assumption still applies to the error term. Ran-
domly assigning participants to the order of conditions and counterbalancing can help
maintain this assumption.

4. Homogeneity of error variances: The variances of the errors should be consistent across
all combinations of the levels of the within-subject factors. This assumption can be
assessed using Levene’s test or visual inspection of residual plots. Data transformations
or non-parametric tests might be considered if this assumption is violated.

By ensuring that these assumptions are met, you can confidently apply within-within factorial
ANOVA to your kinesiology research and trust the validity of your results. Conversely, if any
of these assumptions are violated, consider alternative statistical methods, transformations, or
corrections to maintain the integrity of your analysis.

5 Equations

Here are the equations needed for hand calculation of within-within factorial ANOVA:

Grand mean

𝑓𝑟𝑎𝑐
𝑎

∑
𝑖=1

𝑏
∑
𝑗=1

𝑌𝑖𝑗𝑎𝑏𝑛 (1)

Factor A sum of squares

(𝑆𝑆𝐴) = 𝑛
𝑎

∑
𝑖=1

( ̄𝑌𝑖⋅ − ̄𝑌 )2 (2)

Factor B sum of squares

(𝑆𝑆𝐵) = 𝑛
𝑏

∑
𝑗=1

( ̄𝑌⋅𝑗 − ̄𝑌 )2 (3)
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Interaction sum of squares

(𝑆𝑆𝐴𝐵) = 𝑛
𝑎

∑
𝑖=1

𝑏
∑
𝑗=1

( ̄𝑌𝑖𝑗 − ̄𝑌𝑖⋅ − ̄𝑌⋅𝑗 + ̄𝑌 )2 (4)

Total sum of squares

(𝑆𝑆𝑇 ) =
𝑎

∑
𝑖=1

𝑏
∑
𝑗=1

𝑛
∑
𝑘=1

(𝑌𝑖𝑗𝑘 − ̄𝑌 )2 (5)

Error sum of squares

(𝑆𝑆𝐸) = 𝑆𝑆𝑇 − 𝑆𝑆𝐴 − 𝑆𝑆𝐵 − 𝑆𝑆𝐴𝐵 (6)

Degrees of freedom

(𝑑𝑓) = 𝑎𝑏(𝑛 − 1) (7)

where 𝑎 is the number of levels for factor A, 𝑏 is the number of levels for factor B, and 𝑛 is
the number of observations per cell.

Mean squares

(𝑀𝑆) = SS
df (8)

F-ratio

𝐹 = MSeffect
MSerror

(9)
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6 F Distribution

The F distribution Furtado (2023), also known as the Fisher-Snedecor distribution, is a contin-
uous probability distribution that is widely used in statistical hypothesis testing, particularly
in the analysis of variance (ANOVA). It is named after Ronald A. Fisher and George W.
Snedecor, two prominent statisticians who contributed significantly to its development.

The F-distribution used in the Between-Between Factorial ANOVA is the same as that used
in One-Way ANOVA. The F-distribution is a continuous probability distribution that arises
frequently as the null distribution of the test statistic in ANOVA, regardless of whether it is
a One-Way or Factorial ANOVA.

However, the degrees of freedom for the F-distribution will differ between One-Way ANOVA
and Factorial ANOVA. In One-Way ANOVA, the degrees of freedom are associated with the
number of levels of a single independent variable.

In Factorial ANOVA, the degrees of freedom are associated with the number of levels of
multiple independent variables and their interactions. When comparing F-ratios to critical
F-values, you need to consider the appropriate degrees of freedom for your specific test. In
both One-Way and Factorial ANOVA, you look up the critical F-value in an F-distribution
table based on the numerator and denominator degrees of freedom and the chosen significance
level (usually � = 0.05). If the calculated F-ratio is greater than the critical F-value, you can
reject the null hypothesis and conclude that there is a significant effect.

Some key characteristics of the F distribution are:

1. It is always non-negative, as it represents the ratio of two chi-square distributions.

2. It is asymmetric and positively skewed, with a longer tail on the right side.

3. The peak of the distribution shifts to the right as the degrees of freedom increase.

4. As both degrees of freedom approach infinity, the F distribution converges to a normal
distribution.

# Load required packages quietly
if (!require("pacman")) install.packages("pacman", quiet = TRUE)

Loading required package: pacman

suppressMessages(pacman::p_load("ggplot2", "ggthemes"))

# Set the parameters for the F distribution
df1 <- 10 # degrees of freedom for the numerator
df2 <- 20 # degrees of freedom for the denominator
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# Create a function to calculate the probability density function (pdf) of the F distribution
f_pdf <- function(x) {

df(x, df1, df2)
}

# Define the range of x values to plot
x_range <- seq(0, 5, length.out = 1000)

# Plot the F distribution using ggplot2
suppressWarnings(

ggplot(data.frame(x = x_range, y = f_pdf(x_range)), aes(x = x, y = y)) +
geom_line(color = "blue", size = 1) +
ggtitle(paste("F Distribution with df1 =", df1, "and df2 =", df2)) +
xlab("F value") +
ylab("Probability Density") +
theme_minimal()

)
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7 Measure of effect size

When conducting a within-subjects factorial ANOVA, one of the most critical aspects is the
effect size. The effect size is a quantitative measure of the magnitude of the observed effect in
a statistical analysis. This section will discuss the importance of effect size in within-subjects
factorial ANOVA, the various measures used to calculate it, and the interpretation of these
values.

Effect size is crucial for determining the practical significance of a statistical analysis. While
p-values provide information about the probability of obtaining the observed results due to
chance alone, effect size conveys the strength of the relationship between variables, which is
vital for understanding the real-world implications of the findings. Additionally, effect sizes
are essential for conducting power analyses and determining the appropriate sample size for
future studies.

There are several ways to calculate the effect size for within-subjects factorial ANOVA, with
the most commonly used measures being partial eta-squared (𝜂2

𝑝) and generalized eta-squared
(𝜂2

𝐺). Both indices quantify the proportion of variance in the dependent variable that can be
accounted for by each factor and their interactions.

Partial Eta-Squared (𝜂2
𝑝): This measure of effect size is calculated as the ratio of the sum of

squares for a specific effect (e.g., main effect or interaction) to the sum of the effect’s sum of
squares and the error sum of squares. Partial eta-squared is widely used due to its ease of
computation and interpretation.

Generalized Eta-Squared (𝜂2
𝐺): This effect size measure extends partial eta-squared, consider-

ing the repeated-measures nature of within-subjects designs. It is calculated by dividing the
sum of squares for a specific effect by the total sum of squares, including the subject variability.
Generalized eta-squared is considered a more accurate estimate of effect size in within-subjects
factorial ANOVA, especially when there is an imbalance in the number of observations across
different cells of the design.

Effect size values can be interpreted using the following guidelines:

• Small effect: 𝜂2
𝑝 or 𝜂2

𝐺 � 0.01
• Medium effect: 𝜂2

𝑝 or 𝜂2
𝐺 � 0.06

• Large effect: 𝜂2
𝑝 or 𝜂2

𝐺 � 0.14

When interpreting effect size values, it is essential to consider the research context and the
specific variables under investigation. In some cases, even a small effect size can have significant
practical implications, whereas, in others, a large effect size may not be as meaningful.
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8 Post-Hoc analysis

When conducting a within-subjects factorial ANOVA and finding significant main effects or
interactions, it is essential to perform post hoc analyses to further investigate the nature of
these effects. Post hoc analyses help researchers identify where the significant differences lie
between the levels of the factors or the specific combinations of factor levels that contribute to
the interaction effect. This section will discuss the purpose of post hoc analyses, the different
methods available for conducting these tests, and their interpretation.

Within-subjects factorial ANOVA provides information about the overall main effects and
interactions between factors but does not pinpoint the differences between factor levels or their
combinations. Post hoc analyses are follow-up tests that allow researchers to make pairwise
comparisons between different factor levels or examine simple effects within an interaction,
providing a more detailed understanding of the data and the relationships between variables.

Several post hoc tests are available for within-subjects factorial ANOVA, each with unique
features and assumptions. Some of the most commonly used methods include:

1. Bonferroni Correction: This method involves adjusting the significance level (�) for mul-
tiple comparisons by dividing the original � by the number of comparisons made. While
the Bonferroni correction is straightforward, it can be overly conservative, increasing the
likelihood of Type II errors (i.e., failing to detect a true effect).

2. Tukey’s Honestly Significant Difference (HSD): Tukey’s HSD is a popular post hoc test
that controls the family-wise error rate (i.e., the probability of making at least one Type
I error across all comparisons). This test is more powerful than the Bonferroni correction,
as it accounts for the interdependence of the comparisons.

3. Hochberg’s GT2: This test is an alternative to Tukey’s HSD, specifically designed for
within-subjects designs with unequal sample sizes. Hochberg’s GT2 controls the family-
wise error rate and is considered more powerful than the Bonferroni correction.

4. Simple Effects Analysis: In the case of significant interactions, researchers may conduct
simple effects analysis to examine the effect of one factor at each level of the other
factor(s). This method helps to disentangle the nature of the interaction and identify
specific factor level combinations that contribute to the observed effect.

When interpreting post hoc analysis results, it is crucial to consider the adjusted p-values
or confidence intervals provided by the chosen method. Pairwise comparisons or simple ef-
fects with adjusted p-values less than the significance level (e.g., 0.05) indicate statistically
significant differences between the factor levels or combinations.

Remember that post hoc analyses should be considered exploratory, as they are based on
the original within-subjects factorial ANOVA results. Thus, findings should be interpreted
cautiously, and replication in future studies is recommended to confirm the observed effects.

10



9 Result interpretation

To better understand the relationships between variables and determine the practical implica-
tions of their findings, researchers must follow several key steps when interpreting the results
of a within-subjects factorial ANOVA.

Examine the Assumptions: To correctly interpret the results of a within-subjects factorial
ANOVA, verifying that the data meets certain requirements, such as normality, sphericity, and
the absence of outliers, is important. In addition, one may consider transforming the data or
utilizing alternative statistical methods for any violations.

Analyze Main Effects and Interactions: Review the ANOVA summary table to determine
the statistical significance of main effects and interactions:

• Main Effects: To determine the significant main effect of a factor on the dependent
variable, check the p-values linked to each factor in the analysis. A p-value lower than
the predetermined significance level (for instance, 0.05) suggests that the factor has a
significant main effect on the dependent variable.

• Interactions: Review the p-values for the interaction terms between factors. If the p-
value is less than 0.05, it indicates a significant interaction, which means that the effect
of one factor depends on the level of the other factor(s).

Calculate and Interpret Effect Sizes: To better understand the observed effects and their
practical significance, calculate effect sizes such as partial eta-squared (�^2_p) or generalized
eta-squared (�^2_G) for each significant main effect or interaction. Refer to Section 7 for the
interpretation of effect size.

Conduct Post Hoc Analysis: Once the ANOVA shows significant main effects or interac-
tions, it is important to conduct post hoc tests to pinpoint the specific differences between
factor levels or simple effects within interactions. The post hoc test you choose, such as
Bonferroni, Tukey’s HSD, or Hochberg’s GT2, will depend on the design and sample sizes.

Interpret Post Hoc Analysis Results: To determine if there are any significant differences
between the factor levels or combinations, it is important to review the adjusted p-values or con-
fidence intervals provided by the selected post hoc test. Comparisons or effects with adjusted
p-values below the significance level (such as 0.05) are considered statistically significant.

Report the Results: Provide the findings from the factorial ANOVA conducted within the
group. Emphasize the main effects, interactions, effect sizes, and post hoc analysis results.
Please ensure that the explanation of the results related to the research question and their
practical implications is clear and concise.
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9.1 Interpreting Main Effects When Interaction is Significant

Interpreting the main effects becomes more complex when a significant interaction is present
in a within-subjects factorial ANOVA. A significant interaction suggests that the effect of one
factor depends on the level of the other factor(s). In such cases, focusing on interpreting the
interaction rather than the main effects alone is essential. Here is how to go about it:

1. Simple Effects Analysis: Conduct a simple effects analysis to disentangle the interac-
tion. Simple effects analysis involves examining the effect of one factor at each level of
the other factor(s). This helps identify specific combinations of factor levels contributing
to the significant interaction.

2. Post Hoc Tests for Simple Effects: If a simple effect is significant, perform post hoc
tests to identify which pairwise comparisons are significantly different. Use appropriate
post hoc tests like Bonferroni, Tukey’s HSD, or Hochberg’s GT2, depending on your
study design and sample sizes.

3. Graphical Representation: Plot the means of the dependent variable across the levels
of one factor, with separate lines for each level of the other factor. This interaction
plot will help visualize the nature of the interaction, making it easier to interpret the
relationship between factors.

4. Interpretation: Describe the pattern observed in the interaction plot, paying attention
to the differences in the slopes of the lines. Explain how the effect of one factor changes
depending on the level of the other factor(s). It is crucial to interpret the main effects
in the context of the interaction, as the main effects alone may not provide a complete
picture of the relationships between variables.

5. Report the Results: Report the results of the interaction and the simple effects anal-
ysis, including any post hoc tests. Discuss the practical implications of these findings in
relation to your research question.

Remember that the main effects should be interpreted with caution in the presence of a
significant interaction. The interaction and the simple effects provide more meaningful insights
into the relationships between the factors and the dependent variable.

10 Example

A researcher wanted to investigate the effects of two different motor training interventions
on motor performance over time. Specifically, the study aimed to determine whether balance
training or strength training led to greater improvements in motor performance over three time
points: pretest (T1), midtest (T2), and posttest (T3). To conduct the study, 30 participants
were recruited and were randomly assigned to either the balance training group or the strength
training group. All participants completed motor performance tests at three time points:
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before the training intervention (pretest), at the middle of the training period (midtest), and
after the training intervention (posttest). Motor performance was assessed using the Functional
Reach Test (FRT), which measures a participant’s ability to reach forward while maintaining
their balance.

10.1 Research question

The research question for this study was: Do balance training and strength training interven-
tions have different effects on motor performance over time, as measured by the FRT?

The researcher performed a within-subjects factorial ANOVA to analyze the data and assess
any significant differences in motor performance across the three time points and between the
two intervention groups, as well as any interaction effects between time and intervention.

10.2 Data set up

Table 1: Within-subjects ANOVA data setup

ID Balance_T1 Balance_T2 Balance_T3 Strength_T1 Strength_T2 Strength_T3
1 20 23 26 19 22 25
2 25 28 31 24 27 30
3 28 31 34 27 30 33
4 22 24 27 21 23 26
5 27 30 33 26 29 32

10.3 Variables

In this study, there are several variables to consider:

1. Time (within-subjects factor): This variable represents the three time points at
which the motor performance assessments took place: T1 (pretest), T2 (midtest), and
T3 (posttest). Time is a within-subjects factor because all participants were assessed at
each of these three time points.

2. Intervention Group (within-subjects factor): This variable represents the two dif-
ferent motor training interventions: balance training and strength training. Intervention
group is a within-subjects factor because each participant underwent both interventions.
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3. Motor Performance (dependent variable): This variable represents the partici-
pants’ motor performance, as measured by the Functional Reach Test (FRT) scores.
The variables include balance_t1, balance_t2, balance_t3, strength_t1, strength_t2,
and strength_t3. The FRT scores are the dependent variables because they are expected
to change as a result of the motor training interventions and the passage of time.

4. Participant ID: This variable is a unique identifier for each participant in the study,
ensuring that the data for each individual can be accurately tracked and analyzed. Par-
ticipant ID is a nominal variable, and it is not directly involved in the statistical analysis
of the study.

The main objective of this study is to analyze the interaction between Time and Intervention
Group on motor performance, as well as any significant main effects of Time or Intervention
Group.

10.4 Hypothesis Statements

Null Hypothesis (H0𝑇 ): 𝜇𝑇 1 = 𝜇𝑇 2 = 𝜇𝑇 3

This null hypothesis states that there is no significant difference in the means of motor per-
formance across the three time points (pretest, midtest, and posttest) (i.e., the means are
equal).

Null Hypothesis (H0𝐼): 𝜇𝐼1 = 𝜇𝐼2

This null hypothesis states that there is no significant difference in the means of motor perfor-
mance between the balance and strength training interventions (i.e., the means are equal).

Null Hypothesis (H0𝑇 𝐼):

There is no significant interaction effect between Time and Intervention on motor perfor-
mance.

Alternative Hypothesis (H1𝑇 ): 𝜇𝑇 1 ≠ 𝜇𝑇 2 ≠ 𝜇𝑇 3

This alternative hypothesis states that there is a significant difference in the means of motor
performance across the three time points (pretest, midtest, and posttest) (i.e., the means are
not equal).

Alternative Hypothesis (H1𝐼): 𝜇𝐼1 ≠ 𝜇𝐼2
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This alternative hypothesis states that there is a significant difference in the means of motor
performance between the balance and strength training interventions (i.e., the means are not
equal).

Alternative Hypothesis (H1𝑇 𝐼):

There is a significant interaction effect between Time and Intervention on motor perfor-
mance.

10.5 Analyzing with jamovi

Download jamovi file (data+analysis+output)
Download jamovi output

Jamovi is an open-source statistical software package that allows users to run various statistical
analyses, including ANOVA (Analysis of Variance).

1. Install and open Jamovi: Download the latest version of Jamovi from the official website
and install it on your computer. Once installed, open Jamovi.

2. Import data: To import your dataset, click on the three horizontal lines in the top-left
corner, navigate to ‘Open,’ and browse your computer to find your dataset file (e.g., a
.csv or .xlsx file). Alternatively, you can simply drag and drop the dataset file onto the
Jamovi window.

3. Structure your dataset: For a within-subjects factorial ANOVA, make sure that your
dataset is in the wide format, with each participant’s data in one row, and separate
columns for each level of the within-subject factors. You should also have a unique
identifier for each participant (e.g., Participant ID).

4. Run the within-subjects factorial ANOVA: In the ‘Analyses’ tab, click on ‘ANOVA,’ and
then select ‘Repeated Measures ANOVA.’ This will open the Repeated Measures ANOVA
options panel.

5. Specify factors and levels: In the options panel, specify the number of within-subject
factors and their respective levels by clicking the ‘+ Factor’ button. Provide meaningful
names for each factor and enter the correct number of levels for each factor.

6. Assign variables: For each level of each factor, click the ‘+ Measure’ button and assign
the appropriate variable (column) from your dataset. The variables you assign should
correspond to the columns containing the data for each combination of factor levels.

7. Set additional options (optional): You can customize the output of your analysis by
selecting additional options, such as effect size, post-hoc tests, and plots. You can find
these options in the ‘Repeated Measures ANOVA’ panel under the ‘Options’ and ‘Post
Hoc Tests’ sections.

8. Interpret results: After completing the steps above, Jamovi will automatically run the
within-subjects factorial ANOVA and display the results in the ‘Results’ tab. Review
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the output to check for significant main effects and interactions. Pay close attention to
the p-values, effect sizes, and any post-hoc tests you selected.

Remember that the specific steps and options may change in newer versions of Jamovi, so be
sure to consult the latest documentation and tutorials if you encounter any difficulties. The
steps above refer to Version 2.3.21.0.

10.6 Analyzing with SPSS

Sure! Here are the general steps for running a within-subjects factorial ANOVA in the latest
version of IBM SPSS Statistics (v28 as of this writing):

1. Open SPSS and create a new data set.
2. Enter your data into the Data Editor.
3. Click on “Analyze” in the top menu and select “General Linear Model” and then “Re-

peated Measures” from the dropdown menus.
4. Select your dependent variable and move it to the “Dependent” box.
5. Select your within-subjects factors and move them to the “Within-Subject Factor(s)”

box.
6. Click on the “Options” button to specify any additional options (such as effect sizes or

power analysis).
7. Click on the “Plots” button to specify any desired plots (such as interaction plots).
8. Click on the “Post Hoc” button to specify any desired post hoc tests.
9. Click on the “OK” button to perform the analysis.

10. Examine the output tables and interpret the results.

Note

The specific steps and options may vary depending on the version of SPSS you are using,
as well as the specific details of your data and analysis. The steps above are for version
28.

SPSS Syntax

Here is the SPSS syntax for the 3x2 Between-Between Factorial ANOVA using your dataset:

GLM DV1 DV2 DV3 BY IV1 IV2
/WSFACTOR=FactorName NumberOfLevels FactorLevels
/METHOD=SSTYPE(3)
/PRINT=DESCRIPTIVE ETASQ
/EMMEANS=TABLES(FactorName) COMPARE ADJ(SIDAK)
/CRITERIA=ALPHA(0.05)
/DESIGN=IV1 IV2 FactorName.
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Replace the placeholders with your specific variables:

• DV1, DV2, DV3: Replace these with the names of your dependent variables (e.g., Score1,
Score2, Score3).

• IV1, IV2: Replace these with the names of your independent variables or grouping
variables (e.g., Group, Condition).

• FactorName: Replace this with the name of your within-subjects factor (e.g., Time).

• NumberOfLevels: Replace this with the number of levels for your within-subjects factor
(e.g., 3 for three levels).

• FactorLevels: Replace this with the level labels for your within-subjects factor (e.g.,
'Pretest' 'Midtest' 'Posttest').

10.7 Interpreting the results

Based on the results from the Factorial ANOVA and Post-hoc test tables, we can interpret the
findings as follows:

Based on the current web page context, here is a breakdown of the interpretation of the results
per factor and interaction:

Condition: There was a significant main effect of Condition, F(1, 29) = 371.20, p < .001. This
indicates that there were significant differences between the Balance and Strength conditions
in terms of their impact on the outcome variable.

Time: There was a significant main effect of Time, F(2, 58) = 3529.19, p < .001. This
indicates that there were significant differences between the different time points (Pretest,
Midtest, and Posttest) in terms of their impact on the outcome variable.

Condition x Time Interaction: There was a significant interaction between Condition and
Time, F(2, 58) = 5.80, p = 0.005. This indicates that the effect of Time on the outcome
variable varied depending on the Condition.

10.8 APA Style

The results for this analysis can be written following the APA Style as shown below.

A Repeated Measures ANOVA was conducted to analyze the data. Results indi-
cated significant main effects of Condition, F(1, 29) = 371.20, p < .001, and Time,
F(2, 58) = 3529.19, p < .001. There was also a significant interaction between
Condition and Time, F(2, 58) = 5.80, p = 0.005. Post-hoc tests revealed signifi-
cant differences between all pairs of time points (Pretest, Midtest, and Posttest)
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within both the Balance and Strength conditions. Additionally, there were signif-
icant differences between the Balance and Strength conditions at all time points.
In summary, the study demonstrated that motor performance differed
significantly between the Balance and Strength conditions and improved
over time in both conditions. The interaction effect also implies that
the pattern of improvement over time is not identical between the two
conditions.

11 Nonparametric

The nonparametric equivalent for the within-subjects factorial ANOVA is the Friedman test.
The Friedman test is used when the assumptions of normality and sphericity are not met in a
repeated measures design with one or more within-subject factors.

Here’s how to run the Friedman test in jamovi, SPSS, and R:

11.1 jamovi:

In jamovi, there isn’t a direct way to perform the Friedman test for a within-subjects factorial
design. However, you can use the “WRS” module, which provides a collection of robust
statistical methods, to perform a related test called the aligned rank transform (ART) for
nonparametric factorial data. To do this:

• Install the “WRS” module by clicking on “+ Modules” in the top right corner, search
for “WRS”, and then click “Install”.

• Load your data into jamovi.

• Go to “Analyses” > “WRS” > “Aligned Rank Transform”, and specify your within-
subjects factors and the dependent variable.

The results will be displayed in the output pane, including the test statistics and p-values.

11.2 SPSS:

In SPSS, there’s no direct way to perform the Friedman test for within-subjects factorial
designs. You’ll need to aggregate your data and then perform the Friedman test separately
for each level of the between-subjects factor. To do this:

• Load your data into SPSS.

• Go to “Transform” > “Compute Variable” to create a new variable representing the
mean of the dependent variable across the levels of the within-subjects factor.
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• Go to “Analyze” > “Nonparametric Tests” > “Related Samples”.

• Select “Friedman” as the test type, and add the aggregated dependent variable to the
“Test Variables” list.

• Click “OK” to run the analysis, and the output will include the test statistic and p-value.

11.3 R

In R, you can use the “Friedman.test” function from the base package or the “friedman.test”
function from the “PMCMRplus” package for a more generalized version of the test. To run
the Friedman test:

# Install and load the PMCMRplus package
install.packages("PMCMRplus")
library(PMCMRplus)

# Load your data into R
data <- read.csv("your_data.csv")

# Run the Friedman test using the friedman.test function from the PMCMRplus package
result <- friedman.test(data$DV, data$WithinFactor1, data$WithinFactor2, block=data$Subject)

# Replace data$DV, data$WithinFactor1, data$WithinFactor2, and data$Subject with the appropriate variable names from your dataset

# Display the results
print(result)

12 Other resources

ANOVA in jamovi (Repeated-Measures ANOVA — Jamovi, 2018)

Image credit

Furtado, O. (2023, April 8). RandomStats - One-Way ANOVA [Blog]. RandomStats. https:
//drfurtado.github.io/randomstats/posts/04082023-one-way-anova/

Repeated-measures ANOVA — Jamovi. (2018, August 6). https://www.youtube.com/watch?
v=m5JNwPgiMso
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