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Learning Objectives

1. Understand the history and development of the Student’s
t-test, including the role of William Sealy Gosset and the
origin of the pseudonym “Student.”

2. Recognize the importance of the t-distribution in statisti-
cal testing and its relationship to the normal distribution,
particularly in the context of small sample sizes.

3. Differentiate between the three main types of t-tests:
one-sample t-test, independent samples t-test, and paired
samples t-test, and identify the appropriate application
for each type.

4. Describe the assumptions underlying the t-test, including
the independence of observations, normality of the data,
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and homogeneity of variances (for the independent sam-
ples t-test), and discuss the implications of violating these
assumptions.

5. Explain the process of conducting a t-test, including hy-
pothesis formulation, calculation of test statistics, and
interpretation of p-values and confidence intervals.

6. Evaluate the effect size in the context of a t-test, with a
focus on understanding and interpreting Cohen’s d.

7. Explore alternative nonparametric tests for situations
where the assumptions of the t-test are not met, such
as the Wilcoxon signed-rank test for paired samples and
the Mann-Whitney U test for independent samples.

8. Demonstrate the application of the t-test in real-world
research scenarios using relevant examples in Kinesiology.

9. Provide guidance on how to conduct t-tests using statisti-
cal software, such as jamovi, SPSS, and R, and interpret
the results generated by these tools.

1 Sample data

The dataset (fictitious) consists of 40 participants aged between
40 and 60 years old who participated in an 8-week exercise
program designed to improve muscle strength. The dataset
has five columns: ID, Age, Before, and After, Age_Group.

The ID column represents a unique identifier for each partic-
ipant. The Age column contains the age of each participant
at the time of enrollment in the exercise program. The Before
column represents the muscle strength of each participant, mea-
sured using a dynamometer, before they started the exercise
program. The After column shows the muscle strength of each
participant after completing the 8-week exercise program. The
Age_Group column represents the two age groups for this data
set.

A kinesiologist wants to know if a new exercise program im-
proves muscle strength in older adults. The kinesiologist re-
cruits a sample of 40 older adults and has them complete the
exercise program for 8 weeks. The kinesiologist measures mus-
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cle strength using a dynamometer before and after the 8 week
program.

1.1 Data summary

I will use a data set called dynamometer to demonstrate the
analyses in this blog post. You can download the CSV file here
and a summary of the data is provided in Table 1.

Table 1: Descriptive Statistics for dynamometer

Age_Group N Mean SD
Age 18-39 20 27.9 6.43

40-60 20 49.3 6.38
Before 18-39 20 45.6 1.84

40-60 20 38.5 3.12
After 18-39 20 52.6 1.84

40-60 20 43.7 3.64

2 Introduction to t-test

The t-test is a fundamental statistical method used to deter-
mine the significance of differences between the means of two
groups or the difference between a sample mean and a known
population mean. Introduced by William Sealy Gosset under
the pseudonym “Student” in 1908, the t-test has become an
indispensable tool for researchers across various disciplines, in-
cluding psychology, education, medicine, and social sciences.
The t-test can be used to compare means from independent or
dependent samples and is particularly useful when sample sizes
are small and the population standard deviation is unknown.

The t-test assumes that the data are normally distributed and
the variances are equal between groups. However, even if these
assumptions are not met, the t-test is considered robust and
can still provide reliable results under certain conditions. This
introduction will provide an overview of the different types of
t-tests, their applications, and assumptions, as well as the in-
terpretation of t-test results.
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2.1 Types of t-tests

1. One-sample t-test: The One-sample t-test is used to
compare the mean of a single sample to a known popu-
lation mean or a hypothesized value. This test can help
researchers determine if a sample mean significantly dif-
fers from an expected value, such as the population mean.

2. Independent samples t-test: This type of t-test is
used to compare the means of two independent groups.
For instance, researchers may use an independent sam-
ples t-test to determine if there is a significant difference
in test scores between students taught using two different
teaching methods.

3. Paired samples t-test: The paired samples t-test, also
known as the dependent samples t-test, is used to com-
pare the means of two related groups or repeated mea-
sures. This test is often used in pre-post study designs,
where the same individuals are measured before and after
an intervention or treatment.

2.2 Assumptions

The t-test relies on several assumptions to provide accurate
results:

1. Normality: The data should be approximately normally
distributed. However, the t-test is considered robust
against violations of normality when sample sizes are
large.

2. Homogeneity of variances: For independent samples t-
test, the variances of the two groups should be equal. If
this assumption is violated, a variation of the t-test called
Welch’s t-test can be used, which does not require equal
variances.

3. Independence1: Observations within each group should
be independent of each other. This assumption is partic-
ularly relevant for the independent samples t-test.

1No applicable to Paired-samples t-test
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2.3 Effect Size

We can use the Cohen's d as a measure of effect size which
is used to express the magnitude of the difference between a
sample mean and a known or hypothesized population mean in
standardized units.

Cohen's d can be used as an effect size measure for all types
of t-tests, including One-sample t-tests, independent samples
t-tests, and paired samples t-tests. However, the formula for
calculating Cohen's d varies depending on the type of t-test
being used.

1. One-sample t-test: Cohen’s d for a One-sample t-test
is calculated as the difference between the sample mean
and the population mean, divided by the sample standard
deviation.

𝐶𝑜ℎ𝑒𝑛′𝑠 𝑑 = 𝑋 − 𝜇
𝑆𝐷 (1)

2. Independent samples t-test: For an independent sam-
ples t-test, Cohen’s d is calculated as the difference be-
tween the two group means, divided by the pooled stan-
dard deviation.

𝐶𝑜ℎ𝑒𝑛′𝑠 𝑑 = 𝑋1 − 𝑋2
𝑆𝐷𝑝𝑜𝑜𝑙𝑒𝑑

(2)

The pooled standard deviation is a weighted average of the stan-
dard deviations for each group, which accounts for the sample
sizes in both groups:

where n1 and n2 are the sample sizes for Group 1 and Group
2, respectively, and SD1 and SD2 are their respective standard
deviations.

𝑆𝐷𝑝𝑜𝑜𝑙𝑒𝑑 = √(𝑛1 − 1) × 𝑆𝐷2
1 + (𝑛2 − 1) × 𝑆𝐷2

2
𝑛1 + 𝑛2 − 2 (3)
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3. Paired samples t-test: For a paired samples t-test,
Cohen’s d is calculated as the mean of the difference
scores (the differences between each pair of observations)
divided by the standard deviation of the difference scores.

𝐶𝑜ℎ𝑒𝑛′𝑠 𝑑 = 𝐷
𝑆𝐷𝐷

(4)

In all types of t-tests, Cohen's d provides a standardized mea-
sure of effect size, allowing for a better understanding of the
practical significance of the results. The guidelines for interpret-
ing the magnitude of Cohen's d (small, medium, large effect)
remain the same across all t-tests. However, it is important
to consider the context of the research and the specific field of
study when interpreting Cohen's d values.

Here are some general guidelines for interpreting Cohen's d
effect sizes:

1. Small effect: A Cohen's d value around 0.2 indicates
a small effect, meaning that the difference between the
sample mean and the population mean is relatively small
compared to the sample variability.

2. Medium effect: A Cohen's d value around 0.5 suggests a
medium effect, which implies that the difference between
the sample mean and the population mean is moderate
in relation to the sample variability.

3. Large effect: A Cohen's d value around 0.8 or higher indi-
cates a large effect, signifying that the difference between
the sample mean and the population mean is substantial
compared to the sample variability.

It’s important to note that these guidelines are not strict thresh-
olds but rather serve as a starting point for interpreting effect
sizes. The context of the research and the specific field of study
should also be taken into account when interpreting Cohen's
d values.

For instance, in a One-sample t-test, a significant result indi-
cates that the sample mean is statistically different from the
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population mean. However, a significant result does not pro-
vide information about the practical importance or magnitude
of the difference. Reporting and interpreting Cohen's d along-
side the t-test results can help provide a more comprehensive
understanding of the effect of an intervention or treatment on
the outcome of interest.

2.4 Interpreting t-test results

The t-test produces a t-value, which is used to calculate the
probability (p-value) of observing the given sample data un-
der the null hypothesis (i.e., no significant difference between
means). If the p-value is less than a predetermined significance
level (commonly set at 0.05), the null hypothesis is rejected,
and the difference between means is considered statistically sig-
nificant. Additionally, effect size measures, such as Cohen’s
d, can be reported to indicate the magnitude of the observed
difference.

I will further discuss interpretation of test results separately for
each type of t-test below.

2.5 The t-distribution

The t-distribution, also known as Student’s t-distribution, is a
probability distribution that arises when estimating the mean
of a normally distributed population with an unknown variance
using a small sample. It is a continuous, symmetric distribution,
similar to the standard normal distribution, but with thicker
tails.

The t-distribution plays a crucial role in hypothesis testing, par-
ticularly in t-tests, which are used to compare sample means.
When the population variance is unknown, which is often the
case in real-world situations, the t-distribution is used to esti-
mate the sampling distribution of the sample mean. The shape
of the t-distribution is determined by a parameter called the
degrees of freedom (df), which is related to the sample size. As
the degrees of freedom increase, the t-distribution approaches
the standard normal distribution.
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Key features of the t-distribution:

1. Symmetry: Like the standard normal distribution, the t-
distribution is symmetric around its mean, which is zero.

2. Thicker tails: The t-distribution has thicker tails com-
pared to the standard normal distribution, implying a
higher likelihood of observing extreme values or outliers.
This feature is especially prominent with small sample
sizes or low degrees of freedom.

3. Degrees of freedom: The t-distribution has a single pa-
rameter called degrees of freedom, which determines its
shape. The degrees of freedom are typically defined as the
sample size minus one (n-1) for a One-sample t-test or the
sum of the sample sizes minus the number of groups for
an independent samples t-test.

4. Convergence to the standard normal distribution:
As the degrees of freedom (or sample size) increase,
the t-distribution converges to the standard normal
distribution. With large sample sizes, the difference
between the two distributions becomes negligible, and
the t-distribution can be approximated by the standard
normal distribution.

The t-distribution is widely used in statistical analyses when
the sample size is small and the population variance is unknown.
Understanding the t-distribution is essential for conducting t-
tests and interpreting their results accurately.

# Load necessary libraries
library(ggplot2)

# Set degrees of freedom
df <- 10

# Create a sequence of x values
x <- seq(-5, 5, length.out = 1000)

# Calculate the density values for the t-distribution
t_density <- dt(x, df)
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# Calculate the density values for the standard normal distribution
normal_density <- dnorm(x)

# Create a data frame with the density values
data <- data.frame(x = x, t_density = t_density, normal_density = normal_density)

# Plot the t-distribution and standard normal distribution
ggplot(data, aes(x)) +

geom_line(aes(y = t_density, color = "t-distribution")) +
geom_line(aes(y = normal_density, color = "normal distribution")) +
labs(title = "",

x = "X-axis",
y = "Density",
color = "Distribution") +

theme_minimal()

Figure 1: Comparison of t-distribution and normal distribution
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3 One-sample t-test

3.1 When to use it?

The One-sample t-test should be used when you have a single
sample of data and you want to compare the mean of that
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sample to a known or hypothesized population mean.

3.2 Assumptions

The One-sample t-test makes several assumptions about the
data:

1. Independence: The observations in the sample are inde-
pendent of one another.

2. Normality: The population from which the sample is
drawn is normally distributed.

3. Equal variances: The population variances of the two
groups are equal.

4. Random sampling: The sample is drawn randomly and
independently from the population.

5. Sample size: The sample size is large enough (usually
greater than 30) for the Central Limit Theorem to be
applied.

It is important to check these assumptions before running the
One-sample t-test to ensure the validity of the test results. In
case the sample size is small or the data distribution is not nor-
mal, a non-parametric test such as the Wilcoxon signed-rank
test should be used instead.

3.3 Equation

Below are the two ways we can write the equation for the One-
sample t-test.

𝑡 = ̄𝑥 − 𝜇
𝑠√𝑛

(5)

where:

• ̄𝑥 is the sample mean
• 𝜇 is the population mean
• 𝑠 is the sample standard deviation
• 𝑛 is the sample size
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It also can be written as:

𝑡 = ̄𝑥 − 𝜇
𝑠𝑥/√𝑛 (6)

where:

• ̄𝑥 is the sample mean
• 𝜇 is the population mean
• 𝑠𝑥 is the sample standard deviation
• 𝑛 is the sample size

3.4 Example

The kinesiologist wants to know if the mean muscle strength of
the sample is significantly different from the population mean
muscle strength of older adults (which is hypothesized to be 40
kg). The kinesiologist would run a One-sample t-test to com-
pare the mean muscle strength of the sample (after completing
the exercise program) to the hypothesized population mean of
40 kg. If the t-value is significant, the kinesiologist can con-
clude that the exercise program does improve muscle strength
in older adults.

3.4.1 Research question

Do older adults improve muscle strength following a 8-week
exercise program?

3.4.2 Hypotheses statements

To compare the mean of the After variable to a known value
(in this case, 40), you can use the One-sample t-test. The hy-
potheses for the One-sample t-test comparing the mean After
scores to the value of 40 can be stated as follows:

Null Hypothesis (H0): 𝜇After = 40
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There is no significant difference between the mean After
scores and the value 40. In other words, the population mean
of the After scores is equal to 40.

Alternative Hypothesis (H1): 𝜇After ≠ 40

There is a significant difference between the mean After
scores and the value 40. In other words, the population mean
of the After scores is not equal to 40.

3.4.3 Analyzing with jamovi

To run the One-sample t-test in jamovi, follow these steps:

1. Download and install jamovi if you haven’t already. You
can download it for free from https://www.jamovi.org/download.html

2. Open jamovi by double-clicking the application icon.

3. Import the dynamometer.csv dataset:

a. Click the “hamburger” menu button (three horizon-
tal lines) in the top-left corner of the jamovi window.

b. Click “Open” and then “This PC”
c. Locate and select “dynamometer.csv” and click

“Open.”

4. Once the dataset is loaded, you’ll see the columns: Par-
ticipant_ID, Age, Before, and After.

5. To run the One-sample t-test:

a. Click on the “Analyses” tab at the top of the jamovi
window.

b. Click on the “T-Tests” dropdown menu, and then
select “One-sample t-test.”

6. In the One-sample t-test window:

a. Drag the ‘After‘ variable from the left pane to the
“Variable” box on the right pane.

b. In the “Test value” box, enter “40” (without quotes)
as the hypothesized population mean.
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c. You can select additional options such as “Mean
difference” and “Effect size” under the “Statistics”
dropdown if desired.

7. The One-sample t-test results will be displayed in the
main window, including the t-value, degrees of freedom,
p-value, and confidence interval. You can interpret the
results to determine if the exercise program had a signifi-
cant impact on muscle strength compared to the hypoth-
esized population mean of 40 kg.

Remember to save your analysis for future reference by click-
ing “File” > “Save As” in the top-left corner of the jamovi
window.

Click image to enlarge
Figure 2: One-sample t-test in jamovi

3.4.4 Analyzing with SPSS

To conduct a One-sample t-test in SPSS with the dynamometer
data, follow these steps:

1. Open SPSS and load the dynamometer data into SPSS.
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2. Click on “Analyze” in the top menu, and select “Compare
Means” -> “One-Sample T Test”.

3. In the “One-Sample T Test” dialog box, select the vari-
able After as the “Test Variable” and enter the hypothe-
sized population mean of 40 kg in the “Test Value” field.

4. Click on the “Options” button and select the confidence
level and effect size you wish to calculate (e.g., 95% con-
fidence interval, Cohen’s d effect size).

5. Click “OK” to run the analysis.

SPSS will output the results of the One-sample t-test in a table.
The table will include the sample mean, standard deviation,
and standard error of the mean for the test variable, as well as
the t-value, degrees of freedom, and p-value for the test. It will
also include the confidence interval and effect size you selected
in the “Options” dialog box.

SPSS Syntax

* Load the data.
GET FILE='C:\path\to\your\data\dynamometer.sav'.

* Conduct the One-sample t-test.
ONESAMPLE TTEST

/VARIABLES=After
/TESTVAL=40
/MISSING=ANALYSIS
/CRITERIA=CI(.95)
/DESIGN=NONE
/OPTIONS DESCRIPTIVES EFFECTSIZE.

To run the syntax code:

1. Open the syntax editor by clicking on “File” > “New” >
“Syntax.”

2. Copy and paste the syntax code provided above into the
syntax editor.

3. Select all the lines of the syntax code.
4. Click on the green “Run” button or right-click and choose

“Run Selection” to execute the syntax code.
5. The results will be displayed in the output window, just

like when using the menu.
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This syntax code performs the One-sample t-test comparing the
After scores with a mean value of 40 and reports the results
with a 95% confidence interval.

3.4.5 Analyzing with R

To calculate a One-sample t-test with R, you can follow these
steps:

1. Load the data into R as a dataframe.
2. Use the t.test() function to conduct the One-sample

t-test.
3. Specify the variable to be tested and the value of the

population mean to be tested against.
4. Optional: specify the desired level of significance (alpha)

and type of test (one-tailed or two-tailed).
5. Save the results of the t-test for future reference and use.

# Read in the data
my_data <- read.csv("../data/dynamometer.csv")

# Subset the data for the variable of interest
after_data <- my_data$After

# Run One-sample t-test
t.test(after_data, mu=40)

One Sample t-test

data: after_data
t = 9.6577, df = 39, p-value = 6.798e-12
alternative hypothesis: true mean is not equal to 40
95 percent confidence interval:
46.46284 49.88716
sample estimates:
mean of x

48.175
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3.4.6 Interpreting the results

Here are some steps to interpret the results for a one-sample
t-test:

1. Check the assumptions of normality and homogeneity of
variance.

2. Look at the t-test output and identify the test statistic,
degrees of freedom, p-value, and confidence interval.

3. Evaluate the p-value. If the p-value is less than the alpha
level (usually 0.05), then there is sufficient evidence to
reject the null hypothesis.

4. Look at the confidence interval. If the confidence interval
includes the null hypothesis value, then we cannot reject
the null hypothesis. If the confidence interval does not
include the null hypothesis value, then we can reject the
null hypothesis.

5. Interpret the results in the context of the research ques-
tion. State whether there is statistically significant evi-
dence to support the hypothesis that the population mean
differs from the null hypothesis value, and what the di-
rection and magnitude of the difference is.

3.4.7 Reporting Results in APA Style

When reporting results of the one-sample t-test in APA Style,
the following information should be included:

1. A description of the test used, including the name of the
test (i.e., one-sample t-test), the sample size, and the level
of significance (alpha) used.

2. A statement of the null and alternative hypotheses.

3. The test statistic (t-value) with degrees of freedom (df)
and p-value.

4. The effect size, such as Cohen’s d, can be included as well.

5. A conclusion about whether the null hypothesis is rejected
or failed to be rejected.
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6. A discussion of the practical significance of the results
and any limitations of the study.

For the current analysis, I will suggest the following:

A One-sample t-test was conducted to examine
whether the new exercise program significantly
improved muscle strength in older adults compared
to the hypothesized population mean of 40 kg. The
sample mean muscle strength after completing the
exercise program was M = 48.2, SD = 5.35. The
results revealed a statistically significant increase in
muscle strength, t(39) = 9.66, p < .001, Cohen’s d
= 1.53. The assumption of normality was violated,
as indicated by a significant Shapiro-Wilk test, p =
.032. Thus, the results should be interpreted with
caution. Alternatively, you can run the Wilcoxon
rank test, which is the non-parametric equivalent
to the one-sample test.

Note

The statement above includes all the essential information
in APA style: the test performed, the research question,
the sample mean and standard deviation, the test statistic
(t-value), the degrees of freedom (df), the p-value, the
effect size (Cohen’s d), and the result of the normality
test (Shapiro-Wilk).

3.4.7.1 Other Examples

The results of the one-sample t test indicated that
the mean (M = X, SD = Y) was significantly differ-
ent from the hypothesized value (t(df) = t-value, p
< .05).

In a One-sample t test, the mean of the sample was
significantly different from the hypothesized mean
(t(df) = t-value, p < .05). Specifically, the mean of
the sample was X (SD = standard deviation) while
the hypothesized mean was Y.
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The results of the one-sample t test indicated that
the mean of the sample (M = X, SD = Y) was
significantly different from the hypothesized mean
(� = t) t(df) = t-value, p < .05.

A one-sample t-test was conducted to determine
whether the mean muscle strength score after the
intervention (M = 42.5, SD = 3.2) differed signifi-
cantly from the population mean of 40. The sample
consisted of 20 participants, and the level of signifi-
cance was set at alpha = .05. Results indicated that
the mean muscle strength score was significantly
higher than the population mean, t(19) = 2.57, p
= .018, d = 0.64. Therefore, the null hypothesis
was rejected. The effect size was small to medium.
These findings suggest that the intervention was ef-
fective in improving muscle strength. However, the
study is limited by the small sample size and the
lack of a control group.

4 Independent-samples t-test

4.1 When to use it?

The Independent-samples t-test should be run when compar-
ing the means of two independent groups. For example, in the
field of kinesiology, an Independent-samples t-test can be used
to compare the muscle strength of a group of individuals who
have completed a resistance training program to a group of
individuals who have not completed a resistance training pro-
gram. The independent variable would be whether or not the
individual completed the resistance training program and the
dependent variable would be muscle strength. The t-test would
be used to determine if there is a significant difference in muscle
strength between the two groups, indicating that the resistance
training program had an effect on muscle strength.
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4.2 Assumptions

The assumptions of the Independent-samples t-test include:

1. Normality: The data should be approximately normally
distributed within each group.

2. Independence: The observations in each group should be
independent of one another.

3. Equal variances: The variances of the two groups should
be roughly equal.

4. Random Sampling: The sample of each group should be
random and representative of the population.

5. Equal sample size: The sample size in each group should
be equal or similar.

It is important to note that not all these assumptions need
to be perfectly met for the test to be valid, but the devia-
tions from these assumptions should be small. If the data do
not meet these assumptions, the non-parametric version of the
Independent-samples t-test, such as the Mann-Whitney U test,
can be used instead.

4.3 Equation

Assuming equal variances (Student’s t-test)

𝑡 = �̄�1 − �̄�2

𝑠𝑝√ 1
𝑛1

+ 1
𝑛2

Where:

• 𝑡 is the t-statistic.
• �̄�1 and �̄�2 are the sample means of the two groups.
• 𝑠𝑝 is the pooled standard deviation, calculated as:

𝑠𝑝 = √(𝑛1 − 1)𝑠2
1 + (𝑛2 − 1)𝑠2

2
𝑛1 + 𝑛2 − 2

Where:
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• 𝑛1 and 𝑛2 are the sample sizes of the two groups.
• 𝑠1 and 𝑠2 are the sample standard deviations of the two

groups.

For equal variance not assumed (Welch’s t-test):

𝑡 = �̄�1 − �̄�2

√ 𝑠2
1

𝑛1
+ 𝑠2

2
𝑛2

• 𝑡 is the t-statistic.
• �̄�1 and �̄�2 are the sample means of the two groups.
• 𝑛1 and 𝑛2 are the sample sizes of the two groups.
• 𝑠1 and 𝑠2 are the sample standard deviations of the two

groups.

4.4 Example

In this example, the researcher wanted to investigate mean dif-
ferences between the age groups.

4.4.1 Research question

Is there a significant difference in the mean After scores
between the two age groups, 18-39 and 40-60, in terms of
dynamometer performance?

4.4.2 Hypothesis statements

The hypotheses for this study, which aims to investigate the
difference in the mean ‘After’ scores between the two age groups
(18-39 and 40-60) in terms of dynamometer. performance, can
be stated as follows:

Null Hypothesis (H0): 𝜇18−39 = 𝜇40−60

There is no significant difference in the mean After scores be-
tween the two age groups (18-39 and 40-60) in terms of dy-
namometer performance. In other words, the mean After
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scores for the 18-39 age group are equal to the mean ‘After’
scores for the 40-60 age group.

Alternative Hypothesis (H1): 𝜇18−39 ≠ 𝜇40−60

There is a significant difference in the mean After scores be-
tween the two age groups (18-39 and 40-60) in terms of dy-
namometer performance. In other words, the mean After
scores for the 18-39 age group are not equal to the mean. After
scores for the 40-60 age group.

4.4.3 Analyzing with jamovi

1. Import the data:

• Open Jamovi.
• Click on the “Open” button in the top-left corner,

navigate to the folder where your CSV file is lo-
cated, and open the “dynamometer.csv” file. The
data should now be displayed in the data view.

2. Perform the independent samples t-test:

• Click on the “Analyses” tab in the top-left corner.
• In the analyses menu, go to “T-Tests” and then click

on “Independent Samples T-Test.” A new panel for
the independent samples t-test will appear on the
right side of the screen.

• In the panel, drag and drop the After variable into
the “Dependent Variable” box.

• Drag and drop the Age_Group variable into the
“Grouping Variable” box.

3. Set additional options (optional):

• Check the desired options
– In the example below, I chose Effect Size,

Welch's, and Homogeneity test

4. View the results:
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• The results of the independent samples t-test will be
displayed in the output pane on the right side of the
screen. You’ll see the t-statistic, degrees of freedom,
p-value, and confidence interval for the t-test. If
you’ve selected the effect size option, Cohen’s d will
also be displayed.

Figure 3: Independent-samples t-test in jamovi

4.4.4 Analyzing with SPSS

To perform an independent samples t-test in SPSS, follow these
steps:

1. Import the data:

• Open SPSS.

• Go to “File” > “Open” > “Data,” navigate to the
folder where your CSV file is located, and open the
“dynamometer.csv” file. The data should now be
displayed in the data view.

• If necessary, define the variable properties (e.g., la-
bels, measurement level) in the “Variable View” tab
at the bottom of the data window.
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2. Perform the independent samples t-test using the menu:

• Click on “Analyze” > “Compare Means” >
“Independent-Samples T Test.”

• In the “Independent-Samples T Test” dialog box,
move the “Before” variable to the “Test Variable(s)”
list.

• Move the “Age_Group” variable to the “Grouping
Variable” box.

• Click on the “Define Groups” button and enter the
group identifiers (e.g., “18-39” and “40-60”). Click
“Continue.”

• Click “OK” to run the independent samples t-test.

3. View the results:

• The results of the independent-samples t-test will
be displayed in the output window. You’ll see the
t-statistic, degrees of freedom, p-value, and confi-
dence interval for the t-test, as well as the results
of Levene's test for the equality of variances.

Alternatively, you can use the syntax editor in SPSS to run the
independent samples t-test. Here’s the syntax code:

* Load the data.
GET FILE='C:\path\to\your\data\dynamometer.sav'.

* Conduct the Independent-samples t-test.
T-TEST GROUPS=Age_Group(18-39 40-60)

/MISSING=ANALYSIS
/VARIABLES=Before
/CRITERIA=CI(.95).

To run the syntax code:

1. Open the syntax editor by clicking on “File” > “New” >
“Syntax.”

2. Copy and paste the syntax code provided above into the
syntax editor.
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3. Select all the lines of the syntax code.
4. Click on the green “Run” button or right-click and choose

“Run Selection” to execute the syntax code.
5. The results will be displayed in the output window, just

like when using the menu.

This syntax code performs the independent samples t-test com-
paring the ‘After‘ scores between the two age groups (18-39 and
40-60) and reports the results with a 95% confidence interval.

4.4.5 Analyzing with R

Follow the instructions below to conduct an Independent-
samples t-test to compare the After scores of the two age
groups using the same data set:

1. Split the data set into two groups based on Age_Group
column: “40-60” and “18-39”.

2. Calculate the means and standard deviations of After
scores separately for each group.

3. Check if the assumption of equal variances is met by per-
forming a Levene's test.

1. If the Levene's test is significant, use the Welch
Two Sample t-test instead.

4. Conduct an Independent-samples t-test to compare the
means of ‘After‘ scores between the two age groups.

5. Interpret the results, including the effect size using
Cohen's d.

Here’s the R code to conduct the Independent-samples t-test:

Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)

group 1 8.8822 0.005 **
38

---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Levene's test is significant, suggesting unequal variances between the groups.

Welch Two Sample t-test
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data: After by Age_Group
t = 9.8029, df = 28.128, p-value = 1.422e-10
alternative hypothesis: true difference in means between group 18-39 and group 40-60 is not equal to 0
95 percent confidence interval:

7.080206 10.819794
sample estimates:
mean in group 18-39 mean in group 40-60

52.65 43.70

To calculate the effect size for the Independent-samples t-test.
Below, is the R code and calculation.

# Calculate the means and standard deviations for each group
group_stats <- my_data %>%

group_by(Age_Group) %>%
summarise(Mean = mean(After), SD = sd(After), n = n())

# Calculate the pooled standard deviation
SD_pooled <- sqrt(((group_stats$n[1] - 1) * group_stats$SD[1]^2 +

(group_stats$n[2] - 1) * group_stats$SD[2]^2) /
(group_stats$n[1] + group_stats$n[2] - 2))

# Calculate Cohen's d
cohens_d <- (group_stats$Mean[1] - group_stats$Mean[2]) / SD_pooled

# Print Cohen's d
cat("Cohen's d:", cohens_d, "\n")

Cohen's d: 3.099963

4.4.6 Interpreting the Results

When interpreting the results of an independent samples t-test,
the following steps can be followed:

1. Check for the assumptions of normality and equal vari-
ances in each group. If these assumptions are not met,
alternative tests or data transformations may need to be
considered.
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2. Examine the descriptive statistics and compare the means
and standard deviations of each group.

3. Interpret the results of the Levene’s test to determine
if there is a significant difference in variances between
the two groups. A significant result suggests that the
assumption of equal variances has been violated.

4. Interpret the results of the t-test. Look at the t-value, de-
grees of freedom, and p-value. The t-value indicates the
magnitude of the difference between the means, the de-
grees of freedom indicate the sample size, and the p-value
indicates the likelihood of obtaining the observed differ-
ence if there is truly no difference between the groups.

5. If the p-value is less than the chosen level of significance
(usually 0.05), conclude that there is a significant differ-
ence between the means of the two groups. If the p-value
is greater than the chosen level of significance, conclude
that there is not enough evidence to support the claim of
a difference between the means.

6. Consider the effect size, which provides an indication of
the magnitude of the difference between the means. Com-
mon effect size measures include Cohen’s d and Hedges’ g.
A larger effect size indicates a stronger difference between
the groups.

7. Interpret the results in the context of the research ques-
tion and any relevant literature.

4.4.7 Reporting Results in APA Style

When reporting the results of an independent-samples t test in
APA style, the following information should be included:

1. The test statistic, degrees of freedom, and p-value. These
values are typically reported in parentheses, such as (t(df)
= t-value, p = p-value).

2. A description of the variables being compared, including
the sample sizes and means for each group.

3. A statement of the null hypothesis and alternative hy-
pothesis.
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4. A brief interpretation of the results, including whether
the null hypothesis was rejected or not.

5. A measure of effect size, such as Cohen’s d, may also be
reported.

6. It is also a good idea to provide a brief interpretation of
the results, explaining what they mean in the context of
your research question or hypothesis.

For the current analysis, I suggest the following:

Based on an independent-samples t-test, there was a significant
difference in “After” scores between the 18-39 (M = 52.6, SD
= 1.84) and 40-60 (M = 43.7, SD = 43.5) age groups, t(28.1) =
9.80, p < .001, Cohen’s d = 3.10. Welch’s correction was used
due to unequal variances.

4.4.8 Other Examples

An independent samples t-test was conducted to
compare the mean scores of two groups on a mea-
sure of stress. The sample consisted of 20 partici-
pants in Group A and 25 participants in Group B.
The mean score for Group A was M = 3.5, SD = 1.2,
and the mean score for Group B was M = 2.8, SD
= 0.9. The t-value was t(43) = 2.3, p = .03, indicat-
ing that there was a significant difference between
the mean scores of the two groups, with Group A
scoring higher than Group B. The effect size for the
difference between the two groups was d = .7, indi-
cating a moderate effect. These results suggest that
participants in Group A experienced significantly
higher levels of stress than those in Group B.

The purpose of this study was to examine the effect
of a new teaching method on student achievement.
A sample of 50 students was randomly assigned to
either the experimental group, which received the
new teaching method, or the control group, which
received the traditional teaching method. Student
achievement was measured using a standardized
test. The results of the independent samples t-test
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showed that there was a statistically significant
difference between the experimental and control
groups, t(48) = 2.57, p = .01. The experimental
group had a higher mean score on the achievement
test than the control group. These findings suggest
that the new teaching method was effective in
improving student achievement. However, it is
important to note that the small sample size and
lack of generalizability to other populations are
limitations of this study.

5 Paired-samples t-test

5.1 When to use it?

The Paired-samples t-test should be run when you have two
sets of related (or paired) data that you want to compare. For
example, if you want to compare the effectiveness of two differ-
ent treatments on a group of patients, you would use a Paired-
samples t-test. This test is also commonly used in pre- and
post-test designs, where you want to compare scores before and
after an intervention or treatment. Additionally, if you want
to compare the mean differences between two groups or condi-
tions, but you want to control for individual differences, you
can use a Paired-samples t-test.

5.2 Assumptions

The assumptions of the Paired-samples t-test include:

1. Independence: The observations within each pair are in-
dependent of one another.

2. Normality: The differences between the pairs of observa-
tions are approximately normally distributed.

3. Equal variances: The variances of the differences between
the pairs of observations are equal.

4. Paired data: The observations are paired, meaning that
each individual is measured twice, once before and once
after some intervention, or in two different conditions.
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5. Random Sampling: The sample being used is selected
randomly from the population.

It’s important to note that violations of these assumptions may
lead to inaccurate results, so it’s necessary to check them before
applying the test. Checking for normality can be done using a
normal probability plot, and checking for equal variances can be
done using Levene’s test. The paired sample t-test is sensitive
to the violation of normality and equal variances assumptions,
thus if the assumptions are not met, there are other options
that can be used, such as the Wilcoxon signed-rank test which
is a non-parametric version of the Paired-samples t-test.

5.3 Equation

𝑡 =
̄𝑑

𝑠𝑑/√𝑛

where,
$\bar{d}$ is the mean difference, $s_d$ is the standard devi-
ation of the differences, $n$ is the sample size, and $t$ is the
t-statistic.

5.4 Example

A researcher wanted to investigate whether an intervention
(such as an exercise program) has a significant effect on muscle
strength. Participants were recruited based on specific inclu-
sion criteria (e.g., age range, health status, etc.), and muscle
strength measurements (in kg) were taken for each participant
both before and after the intervention. The null hypothesis
would be that there is no significant difference between the
“Before” and “After” measurements, while the alternative hy-
pothesis would be that there is a significant difference. The
Paired-samples t test would be an appropriate statistical anal-
ysis to test this hypothesis.
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5.4.1 Research Question

Is there a significant difference between muscle strength before
and after a training program among participants of different
age groups?

5.4.2 Hypotheses Statements

There is no significant difference between the mean of the dif-
ferences in the paired observations. In other words, the mean
difference between the ‘Before’ and ‘After’ scores is equal to
zero.

Null Hypothesis (H0): 𝜇𝐷 = 0

There is a significant difference between the mean of the dif-
ferences in the paired observations. In other words, the mean
difference between the ‘Before’ and ‘After’ scores is not equal
to zero.

Alternative Hypothesis (H1): 𝜇𝐷 ≠ 0

5.4.3 Analyzing with jamovi

To run the Paired-samplea t-test in jamovi, follow these
steps:

1. Download and install jamovi if you haven’t already. You
can download it for free from https://www.jamovi.org/download.html

2. Open jamovi by double-clicking the application icon.

3. Import the dynamometer.csv dataset:

a. Click the “hamburger” menu button (three horizon-
tal lines) in the top-left corner of the jamovi window.

b. Click “Open” and then “This PC”
c. Locate and select “dynamometer.csv” and click

“Open.”
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4. Once the dataset is loaded, you’ll see the columns: ID,
Age, Before, and After.

5. Click the “T-tests” button on the top of the screen and
select “Paired Samples t-test” from the dropdown menu.

6. A new window will appear, displaying the Paired-samples
t-test options. Move the Before and After variables un-
der Paired Variables.

7. Select the options option shown in the screenshot below.

8. The results will appear in the “Results” tab on the right
side of the screen, including means, standard deviations,
the t-value, degrees of freedom, and the p-value.

Figure 4: Conducting the Paired-samples t-test in jamovi

5.4.4 Analyzing with SPSS

here are the steps to run the Paired-samples t-test in SPSS:

1. Open SPSS and go to File > Open > Data.
2. Locate the dynamometer.csv file and click Open.
3. Select the option “Read variable names from the first row

of data” and click OK.
4. Go to Analyze > Compare Means > Paired-samples T

Test.
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5. In the “Paired Variables” dialog box, select “Before” and
“After” and move them to the “Paired Variables” list us-
ing the arrow button.

6. Click the “Options” button and select “Descriptive statis-
tics” and “Paired samples test” checkboxes.

7. Click the “Continue” button and then click the “OK” but-
ton to run the analysis.

Here is the syntax for the Paired-samples t-test in SPSS:

GET
/FILE='PATH_TO_FILE/dynamometer.csv'.

COMPUTE Before_After = After - Before.
T-TEST PAIRS=Before_After (0).

/MISSING=ANALYSIS
/CRITERIA=CI(.95)
/VARIABLES=Before_After
/OPTIONS DESCRIPTIVES EFFECTSIZE ESTIMATE.

Note

Note that the GET command should be modified to spec-
ify the correct file path for the “dynamometer.csv” data
set. Also, the COMPUTE command creates a new variable
called “Before_After” that represents the difference be-
tween the “After” and “Before” variables. The T-TEST
command then conducts the Paired-samples t-test using
the “Before_After” variable, with the OPTIONS subcom-
mand specifying the desired confidence level and request-
ing descriptive statistics and effect size measures.

To run the syntax in SPSS, you can follow these steps:

1. Open SPSS and go to “File” -> “Open” -> “Data”.
2. In the “Open Data” window, locate and select the “dy-

namometer.sav” file.
3. Click “Open” and the data set will be loaded into SPSS.
4. Go to “File” -> “New” -> “Syntax”.
5. In the syntax editor, copy and paste the syntax provided

earlier.
6. Click “Run” to execute the syntax.
7. The output will be displayed in the output viewer.
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5.4.5 Analyzing with R

Here are the steps to run a Paired-samples t-test in RStudio
using the dynamometer.csv data set.

Running the text

# Load the data
my_data <- read.csv("../data/dynamometer.csv")

# Calculate the differences between 'Before' and 'After' scores
my_data$Difference <- my_data$After - my_data$Before

# Run the paired samples t-test
t_test_result <- t.test(my_data$Before, my_data$After, paired = TRUE)

# Print the t-test result
print(t_test_result)

Paired t-test

data: my_data$Before and my_data$After
t = -31.208, df = 39, p-value < 2.2e-16
alternative hypothesis: true mean difference is not equal to 0
95 percent confidence interval:
-6.495358 -5.704642
sample estimates:
mean difference

-6.1

Calculate the Effect Size (Cohen’s d)

# Calculate Cohen's d
mean_difference <- mean(my_data$Difference)
sd_difference <- sd(my_data$Difference)
cohen_d <- mean_difference / sd_difference

# Print the effect size
print(cohen_d)

[1] 4.934453
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5.4.6 Interpreting the Results

To interpret the results of a paired samples t-test and the effect
size (Cohen’s d), follow these steps:

1. Check the t-test’s p-value: The p-value indicates the prob-
ability of observing a test statistic as extreme as the one
obtained if the null hypothesis were true. In this case,
the null hypothesis states that there is no significant dif-
ference between the “Before” and “After” scores.

1. If the p-value is less than the significance level (usu-
ally set at 0.05), you can reject the null hypothesis
and conclude that there is a significant difference
between the “Before” and “After” scores.

2. If the p-value is greater than the significance level,
you cannot reject the null hypothesis and there is
insufficient evidence to conclude that there is a sig-
nificant difference between the “Before” and “After”
scores.

2. Evaluate Cohen’s d: Cohen’s d is a measure of the effect
size, which indicates the standardized magnitude of the
difference between the “Before” and “After” scores. The
larger the absolute value of Cohen’s d, the larger the effect
size.

1. Small effect: |d| = 0.2
2. Medium effect: |d| = 0.5
3. Large effect: |d| = 0.8

These are general guidelines for interpreting Cohen’s d. Depend-
ing on the context of your study, these thresholds may vary.

5.4.7 Reporting Results

When reporting the results of a Paired-samples t-test, it is im-
portant to include the following information:
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1. The test statistic (e.g. t-value) and the associated p-value.
The t-value tells us how many standard errors the mean
difference is from zero, and the p-value tells us the prob-
ability of observing a t-value as extreme as the one we
calculated under the assumption that the null hypothesis
is true.

2. The sample size (e.g. the number of pairs of observations).
3. The mean difference and the standard deviation of the

differences.
4. The effect size, such as Cohen’s d, which is a measure of

the magnitude of the difference between the means.

For the current analysis, I suggest the following:

A Paired-samples t-test was conducted to compare the scores
before and after the intervention. There was a significant dif-
ference in the scores for before (M = 42.1, SD = 4.42) and after
(M = 48.2, SD = 5.35) conditions; t(39) = -31.208, p < .001,
95% CI [-6.495, -5.705], Cohen’s d = 4.93. The results indicate
that there is a significant difference between the “Before” and
“After” scores, with the “After” scores being higher on aver-
age. The effect size (Cohen’s d) is large, suggesting that the
intervention had a substantial impact on the scores.

5.4.8 Other Examples

A Paired-samples t-test was conducted to compare
the pre-test and post-test scores of a group of stu-
dents. The sample size was 20 pairs of observations.
The mean difference between the pre-test and post-
test scores was 5.3 (SD = 2.5). The t-value was 3.87,
with a p-value of 0.001. The effect size (Cohen’s d)
was 0.67, which indicates a moderate effect size.

The results of the Paired-samples t-test revealed
that there was a statistically significant difference
between the pre-test and post-test scores of the stu-
dents, t(19) = 3.87, p = 0.001. The mean difference
was 5.3 (95% CI [3.4, 7.2]), and the effect size (d =
0.67) suggests moderate effect size.
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5.4.8.1 Image credit

5.4.9 Image credit
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