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Simple Linear Regression

Linear Regression Models

• A way of measuring the relationship between two variables
• Similar to Pearson correlation, but more powerful
• Can be used to predict one variable from another

Example: Parenthood Data Set

• Data set contains measures of sleep and grumpiness for Dani
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• Hypothesis: less sleep leads to more grumpiness
• Scatterplot shows a strong negative correlation (r = -.90)

Regression Line

• A straight line that best fits the data
• Represents the average relationship between the variables
• Can be used to estimate grumpiness from sleep
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How to Draw a Regression Line?

• The line should go through the middle of the data

• The line should minimize the vertical distances between the data points and the line

• The line should have a slope and an intercept that can be calculated from the data

The formula for a straight line

• Usually written like this: 𝑦 = 𝑎 + 𝑏𝑥
• Two variables: 𝑥 and 𝑦
• Two coefficients: 𝑎 and 𝑏
• Coefficient 𝑎 represents the y-intercept of the line

• Coefficient 𝑏 represents the slope of the line

The interpretation of intercept and slope
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• Intercept: the value of 𝑦 that you get when 𝑥 = 0
• Slope: the change in 𝑦 that you get when you increase 𝑥 by 1 unit
• Positive slope: 𝑦 goes up as 𝑥 goes up
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• Negative slope: 𝑦 goes down as 𝑥 goes up

The formula for a Regression line

• Same as the formula for a straight line, but with some extra notation

• So if 𝑦 is the outcome variable (DV) and 𝑥 is the predictor variable (IV), then:

̂𝑦𝑖 = 𝑏0 + 𝑏1𝑥𝑖

̂𝑦𝑖: the predicted value of the outcome variable (𝑦) for observation 𝑖
𝑦𝑖: the actual value of the outcome variable (𝑦) for observation 𝑖
𝑥𝑖: the value of the predictor variable (𝑥) for observation 𝑖
𝑏0: the estimated intercept of the regression line

𝑏1: the estimated slope of the regression line

xi is the value of the predictor variable (#of hours on day 1) and yi is the corresponding value
of the outcome variable (grumpiness on that day) - works for all observations.

The assumptions of the regression model

• We assume that the formula works for all observations in the data set (i.e., for all i)

• We distinguish between the actual data 𝑦𝑖 and the estimate ̂𝑦𝑖 (i.e., the prediction that
our regression line is making)

• We use 𝑏0 and 𝑏1 to refer to the coefficients of the regression model

– 𝑏0: the estimated intercept of the regression line

– 𝑏1: the estimated slope of the regression line

Residuals of the Regression model

# Generate some example data with a strong negative correlation
set.seed(123)
x <- rnorm(100)
y <- -0.8*x + rnorm(100, sd=0.5)

# Plot the data
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plot(x,y)

# Add the best fit line
abline(lm(y ~ x), col="red")
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Now, we have the complete linear regression model

̂𝑦𝑖 = 𝑏0 + 𝑏1𝑥𝑖 + 𝑒𝑖

• The data do not fall perfectly on the regression line

• The difference between the model prediction and that actual data point is called a resid-
ual, and we refer to it as 𝑒𝑖

• Mathematically, the residuals are defined as 𝑒𝑖 = 𝑦𝑖 − ̂𝑦𝑖

• The residuals measure how well the regression line fits the data

– Smaller residuals: better fit
– Larger residuals: worse fit
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Estimating a linear regression model

• We want to find the regression line that fits the data best

• We can measure how well the regression line fits the data by looking at the residuals

• The residuals are the differences between the actual data and the model predictions

• Smaller residuals mean better fit, larger residuals mean worse fit

Ordinary least squares regression

• We use the method of least squares to estimate the regression coefficients

• The regression coefficients are estimates of the population parameters

• We use ̂𝑏0 and ̂𝑏1 to denote the estimated coefficients

• Ordinary least squares (OLS) regression is the most common way to estimate a linear
regression model

How to find the estimated coefficients

• There are formulas to calculate ̂𝑏0 and 𝑏̂1 from the data

• The formulas involve some algebra and calculus that are not essential to understand the
logic of regression

• We can use jamovi to do all the calculations for us

• jamovi will also provide other useful information about the regression model

Linear Regression in jamovi

• We can use jamovi to estimate a linear regression model from the data
• We need to specify the dependent variable and the covariate(s) in the analysis
• jamovi will output the estimated coefficients and other statistics
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Example: Parenthood data

Data file: parenthood.csv (found in module lsj data in jamovi)

Dependent variable: dani.grump (Dani’s grumpiness)

Covariate: dani.sleep (Dani’s hours of sleep)

Estimated intercept: ̂𝑏0 = 125.96

Estimated slope: ̂𝑏1 = -8.94

Regression equation: ̂𝑌𝑖 = 125.96 + (−8.94𝑋𝑖)

Interpreting the estimated model

• We need to understand what the estimated coefficients mean
• The slope 𝑏̂1 tells us how much the dependent variable changes when the covariate

increases by one unit
• The intercept ̂𝑏0 tells us what the expected value of the dependent variable is when

the covariate is zero
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Example: Parenthood data

• Dependent variable: dani.grump (Dani’s grumpiness)
• Covariate: dani.sleep (Dani’s hours of sleep)
• Estimated slope: ̂𝑏1 = -8.94

– Interpretation: Each additional hour of sleep reduces grumpiness by 8.94 points

• Estimated intercept: 𝑏̂0 = 125.96

– Interpretation: If Dani gets zero hours of sleep, her grumpiness will be 125.96
points

Multiple Regression

Introduction

• We can use more than one predictor variable to explain the variation in the outcome
variable

– Add more terms to our regression equation to represent each predictor variable

• Each term has a coefficient that indicates how much the outcome variable changes when
that predictor variable increases by one unit

Example: Parenthood data

• Outcome variable: dani.grump (Dani’s grumpiness)

• Predictor variables: dani.sleep (Dani’s hours of sleep) and baby.sleep (Baby’s hours
of sleep)

Regression equation: 𝑌𝑖 = 𝑏0 + 𝑏1𝑋𝑖1 + 𝑏2𝑋𝑖2 + 𝜖𝑖

𝑌𝑖: Dani’s grumpiness on day 𝑖
𝑋𝑖1: Dani’s hours of sleep on day 𝑖
𝑋𝑖2: Baby’s hours of sleep on day 𝑖
𝑏0: Intercept

𝑏1: Coefficient for Dani’s sleep

𝑏2: Coefficient for Baby’s sleep

𝜖𝑖: Error term on day 𝑖
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Estimating the coefficients in multiple regression

• We want to find the coefficients that minimize the sum of squared residuals
• Residuals are the differences between the observed and predicted values of the outcome

variable
• We use a similar method as in simple regression, but with more terms in the

equation

Doing it in jamovi

• jamovi can estimate multiple regression models easily
• We just need to add more variables to the Covariates box in the analysis
• jamovi will output the estimated coefficients and other statistics for each predictor vari-

able
• The Table shows the coefficients for dani.sleep and baby.sleep as predictors of dani.grump
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Interpreting the coefficients in multiple regression

• The coefficients tell us how much the outcome variable changes when one predictor
variable increases by one unit, holding the other predictor variables constant

• The larger the absolute value of the coefficient, the stronger the effect of that pre-
dictor variable on the outcome variable

• The sign of the coefficient indicates whether the effect is positive or negative

Example: Parenthood data

• Coefficient (slope) for dani.sleep: -8.94

– Interpretation: Each additional hour of sleep reduces Dani’s grumpiness by 8.94
points, regardless of how much sleep the baby gets

• Coefficient (slope) for baby.sleep: 0.01

– Interpretation: Each additional hour of sleep for the baby increases Dani’s grumpi-
ness by 0.01 points, regardless of how much sleep Dani gets

Quantifying the fit of the regression model

• We want to know how well our regression model predicts the outcome variable

• We can compare the predicted values ( ̂𝑌𝑖 ) to the observed values ( 𝑌𝑖 ) using two sums
of squares

– Residual sum of squares ( 𝑆𝑆𝑟𝑒𝑠 ): measures how much error there is in our
predictions

– Total sum of squares ( 𝑆𝑆𝑡𝑜𝑡 ): measures how much variability there is in the
outcome variable

The 𝑅2 value (effect size)

• The 𝑅2 value is a proportion that tells us how much of the variability in the outcome
variable is explained by our regression model

• It is calculated as:

𝑅2 = 1 − 𝑆𝑆𝑟𝑒𝑠
𝑆𝑆𝑡𝑜𝑡
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• It ranges from 0 to 1, with higher values indicating better fit

• It can be interpreted as the percentage of variance explained by our regression
model

The relationship between regression and correlation

• Regression and correlation are both ways of measuring the strength and direction of a
linear relationship between two variables

• For a simple regression model with one predictor variable, the 𝑅2 value is equal to
the square of the Pearson correlation coefficient (𝑟2)

– Running a Pearson correlation is equivalent to running a simple linear regression
model

The adjusted 𝑅2 value

• The adjusted 𝑅2 value is a modified version of the 𝑅2 value that takes into account the
number of predictors in the model

– The adjusted 𝑅2 value adjusts for the degrees of freedom in the model

• It increases only if adding a predictor improves the model more than expected by
chance

Which one to report: 𝑅2 or adjusted 𝑅2?

• There is no definitive answer to this question
• It depends on your preference and your research question
• Some factors to consider are:

– Interpretability: 𝑅2 is easier to understand and explain
– Bias correction: Adjusted 𝑅2 is less likely to overestimate the model performance
– Hypothesis testing: There are other ways to test if adding a predictor improves the

model significantly
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Hypothesis tests for regression models

• We can use hypothesis tests to evaluate the significance of our regression model and
its coefficients

• There are two types of hypothesis tests for regression models:

– Testing the model as a whole: Is there any relationship between the predictors
and the outcome?

– Testing a specific coefficient: Is a particular predictor significantly related to
the outcome?

Test the model as a whole

𝐻0: there is no relationship between the predictors and the outcome

𝐻𝑎: data follow the regression model

𝐹 = (𝑅2/𝐾)
(1 − 𝑅2)/(𝑁 − 𝐾 − 1)

• where 𝑅2 is the proportion of variance explained by our model, 𝐾 is the number of
predictors, and 𝑁 is the number of observations

• The F-test statistic follows an F-distribution with 𝐾 and 𝑁 − 𝐾 − 1 degrees of freedom
• We can use a p-value to determine if our F-test statistic is significant
• jamovi can do this for us!

Tests for Individual Coefficients

• The F-test checks if the model as a whole is performing better than chance

• If the F-test is not significant, then the regression model may not be good

• However, passing the F-test does not imply that the model is good

Example of Multiple Linear Regression

• In a multiple linear regression model with baby.sleep and dani.sleep as predictors:

– The estimated regression coefficient for baby.sleep is small (0.01) compared to
dani.sleep (-.8.95)

– This suggests that only dani.sleep matters in predicting grumpiness
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Hypothesis Testing for Regression Coefficients

• A t-test can be used to test if a regression coefficient is significantly different from zero

𝐻0: b = 0 (the true regression coefficient is zero)

𝐻0: b � 0 (the true regression coefficient is not zero)

Running Hypothesis Tests in Jamovi

• To compute statistics, check relevant options and run regression in jamovi

• See result in the next slide

Output

Model Coefficients

• Located at bottom of jamovi analysis results
• Each row refers to one coefficient in regression model
• First row is intercept term; later rows look at each predictor
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Coefficient Information

• First column: estimate of b
• Second column: standard error estimate
• Third and fourth columns: lower and upper values for 95% confidence interval around b

estimate
• Fifth column: t-statistic ( 𝑡 = 𝑏/𝑠𝑒(𝑏) )
• Last column: p-value for each test

Degrees of Freedom

• Not listed in coefficients table itself
• Always N - K - 1
• Listed in table at top of output

Interpretation

Conclusion

• The current regression model may not be the best fit for the data
• Dropping baby.sleep predictor entirely may improve the model

• The model performs significantly better than chance
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– 𝐹(2, 97) = 215.24, 𝑝 < .001
– 𝑅2 = .81 value indicates that the regression model accounts for 81% of the variabil-

ity in the outcome measure

• Individual Coefficients

– baby.sleep variable has no significant effect
– All work in this model is being done by the dani.sleep variable

Assumptions of Regression

The linear regression model relies on several assumptions.

• Linearity: The relationship between X and Y is assumed to be linear.

• Independence: Residuals are assumed to be independent of each other.

• Normality: The residuals are assumed to be normally distributed.

• Equality of Variance: The standard deviation of the residual is assumed to be the same
for all values of Y-hat.

Assumptions of Regression, cont.

Also…

• Uncorrelated Predictors: In a multiple regression model, predictors should not be too
strongly correlated with each other.

– Strongly correlated predictors (collinearity) can cause problems when evaluating
the model.

• No “Bad” Outliers: The regression model should not be too strongly influenced by one
or two anomalous data points.

– Anomalous data points can raise questions about the adequacy of the model and
trustworthiness of data.
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Diagnostics

Checking for linearity

Checking Linearity

• It is important to check for the linearity of relationships between predictors and outcomes.

Plotting Relationships

• One way to check for linearity is to plot the relationship between predicted values and
observed values for the outcome variable.
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Using Jamovi

• In Jamovi, you can save predicted values to the dataset and then draw a scatterplot of
observed against predicted (fitted) values.

Interpreting Results

• If the plot looks approximately linear, then it suggests that your model is not doing too
badly. However, if there are big departures from linearity, it suggests that changes need
to be made.

Checking for linearity, cont.
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To get a more detailed picture of linearity, it can be helpful to look at the relationship between
predicted values and residuals.

Using Jamovi

• In Jamovi, you can save residuals to the dataset and then draw a scatterplot of
predicted values against residual values.

Interpreting Results

• Ideally, the relationship between predicted values and residuals should be a straight,
perfectly horizontal line. In practice, we’re looking for a reasonably straight or flat line.
This is a matter of judgement.
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Checking for normality (residuals)

Regression models rely on a normality assumption: the residuals should be normally dis-
tributed.

Using Jamovi

• In Jamovi, you can draw a QQ-plot via the ‘Assumption Checks’ - ‘Assumption Checks’
- ‘Q-Q plot of residuals’ option.

Interpreting Results

• The output shows the standardized residuals plotted as a function of their theoretical
quantiles according to the regression model. The dots should be somewhat near the line.
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Checking for normality (residuals), cont.

Checking Relationship between Predicted Values and Residuals

• In Jamovi, you can use the ‘Residuals Plots’ option to check the relationship between
predicted values and residuals.

• The output provides a scatterplot for each predictor variable, the outcome variable,
and the predicted values against residuals.

Interpreting Results

• We are looking for a fairly uniform distribution of dots with no clear bunching or pat-
terning.

– The dots are fairly evenly spread across the whole plot

Issues with the relationship between predicted values and residuals?

– Transform one or more of the variables (Box-Cox Transform in jamovi)

21



Checking for equality of variance

Regression models make an assumption of equality (homogeneity) of variance.

• This means that the variance of the residuals is assumed to be constant.

Plotting Equality of Variance in Jamovi

• To check this assumption in Jamovi, first calculate the square root of the absolute size
of the residual.

– Compute this new variable using the formula SQRT(ABS(Residuals))

• Then plot this against the predicted values.
• The plot should show a straight horizontal line running through the middle.
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Checking for Collineary

• Variance Inflation Factors (VIFs) can be used to determine if predictors in a regression
model are too highly correlated with each other.

– Each predictor has an associated VIF.

• In Jamovi, click on the ‘Collinearity’ checkbox in the ‘Regression’ - ‘Assumptions’ options
to see VIF values.

• Interpreting VIF

– A VIF of 1 means no correlation among the predictor and the remaining predictor
variables

– VIFs exceeding 4 warrant further investigation
– VIFs exceeding 10 are signs of serious multicollinearity requiring correction

Checking for outliers

• Used in regression analysis to identify influential data points that may negatively affect
your regression model

• Datasets with a large number of highly influential points might not be suitable for linear
regression without further processing such as outlier removal or imputation
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• Identifying Outliers

– A general rule of thumb: Cook’s distance greater than 1 is often considered large

• What if the value is greater than 1?

– remove the outlier and run the regression again
– How? In jamovi you can save the Cook’s distance values to the dataset, then draw

a boxplot of the Cook’s distance values to identify the specific outliers.
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